Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 42
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Bakelants
1
67 kgLjungblad
2
70 kgGazvoda
3
72 kgHonig
4
61 kgSaramotins
5
75 kgPedersen
6
62 kgTaciak
10
68 kgAaen Jørgensen
13
63 kgPoels
14
66 kgVachon
15
65 kgWyss
16
63 kgVandborg
18
75 kgSchillinger
21
72 kgFirsanov
24
58 kgDockx
25
64 kgde Jonge
28
65 kgCammaerts
29
74 kgMahorič
31
68 kgDevillers
32
62 kgCazaux
33
59 kgHermans
37
72 kgRuijgh
38
64 kg
1
67 kgLjungblad
2
70 kgGazvoda
3
72 kgHonig
4
61 kgSaramotins
5
75 kgPedersen
6
62 kgTaciak
10
68 kgAaen Jørgensen
13
63 kgPoels
14
66 kgVachon
15
65 kgWyss
16
63 kgVandborg
18
75 kgSchillinger
21
72 kgFirsanov
24
58 kgDockx
25
64 kgde Jonge
28
65 kgCammaerts
29
74 kgMahorič
31
68 kgDevillers
32
62 kgCazaux
33
59 kgHermans
37
72 kgRuijgh
38
64 kg
Weight (KG) →
Result →
75
58
1
38
# | Rider | Weight (KG) |
---|---|---|
1 | BAKELANTS Jan | 67 |
2 | LJUNGBLAD Jonas | 70 |
3 | GAZVODA Gregor | 72 |
4 | HONIG Reinier | 61 |
5 | SARAMOTINS Aleksejs | 75 |
6 | PEDERSEN Martin | 62 |
10 | TACIAK Mateusz | 68 |
13 | AAEN JØRGENSEN Jonas | 63 |
14 | POELS Wout | 66 |
15 | VACHON Florian | 65 |
16 | WYSS Marcel | 63 |
18 | VANDBORG Brian Bach | 75 |
21 | SCHILLINGER Andreas | 72 |
24 | FIRSANOV Sergey | 58 |
25 | DOCKX Gert | 64 |
28 | DE JONGE Maarten | 65 |
29 | CAMMAERTS Edwig | 74 |
31 | MAHORIČ Mitja | 68 |
32 | DEVILLERS Gilles | 62 |
33 | CAZAUX Pierre | 59 |
37 | HERMANS Ben | 72 |
38 | RUIJGH Rob | 64 |