Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 24
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Benoot
1
72 kgVerhelst
2
71 kgVermeltfoort
3
85 kgEibegger
5
68 kgZoidl
6
63 kgSilvestre
7
78 kgAlaphilippe
8
62 kgBlain
9
82 kgGuillemois
10
66 kgBarbier
11
79 kgDron
12
72 kgZangerle
13
63 kgPfingsten
15
69 kgHansen
16
60 kgReihs
17
75 kgScully
20
85 kgGmelich Meijling
21
77 kgMartin
22
55 kgVakoč
23
68 kgNorris
25
67 kgMeurisse
27
71 kg
1
72 kgVerhelst
2
71 kgVermeltfoort
3
85 kgEibegger
5
68 kgZoidl
6
63 kgSilvestre
7
78 kgAlaphilippe
8
62 kgBlain
9
82 kgGuillemois
10
66 kgBarbier
11
79 kgDron
12
72 kgZangerle
13
63 kgPfingsten
15
69 kgHansen
16
60 kgReihs
17
75 kgScully
20
85 kgGmelich Meijling
21
77 kgMartin
22
55 kgVakoč
23
68 kgNorris
25
67 kgMeurisse
27
71 kg
Weight (KG) →
Result →
85
55
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | BENOOT Tiesj | 72 |
2 | VERHELST Louis | 71 |
3 | VERMELTFOORT Coen | 85 |
5 | EIBEGGER Markus | 68 |
6 | ZOIDL Riccardo | 63 |
7 | SILVESTRE Fábio | 78 |
8 | ALAPHILIPPE Julian | 62 |
9 | BLAIN Alexandre | 82 |
10 | GUILLEMOIS Romain | 66 |
11 | BARBIER Rudy | 79 |
12 | DRON Boris | 72 |
13 | ZANGERLE Joel | 63 |
15 | PFINGSTEN Christoph | 69 |
16 | HANSEN Jesper | 60 |
17 | REIHS Michael | 75 |
20 | SCULLY Tom | 85 |
21 | GMELICH MEIJLING Jarno | 77 |
22 | MARTIN Guillaume | 55 |
23 | VAKOČ Petr | 68 |
25 | NORRIS Lachlan | 67 |
27 | MEURISSE Xandro | 71 |