Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Kvasina
1
72 kgŠtimulak
4
64 kgPower
5
68 kgHirt
7
62 kgCalmejane
8
70 kgMarin
9
67 kgGolčer
11
66.5 kgMeurisse
12
71 kgVervaeke
13
68 kgGuerin
14
64 kgDernies
16
68 kgFoliforov
17
61 kgEiking
18
75 kgBeukeboom
19
88 kgGrellier
20
65 kgDron
23
72 kgVliegen
24
70 kgVan Rooy
25
70 kgKonrad
27
64 kg
1
72 kgŠtimulak
4
64 kgPower
5
68 kgHirt
7
62 kgCalmejane
8
70 kgMarin
9
67 kgGolčer
11
66.5 kgMeurisse
12
71 kgVervaeke
13
68 kgGuerin
14
64 kgDernies
16
68 kgFoliforov
17
61 kgEiking
18
75 kgBeukeboom
19
88 kgGrellier
20
65 kgDron
23
72 kgVliegen
24
70 kgVan Rooy
25
70 kgKonrad
27
64 kg
Weight (KG) →
Result →
88
61
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | KVASINA Matija | 72 |
4 | ŠTIMULAK Klemen | 64 |
5 | POWER Robert | 68 |
7 | HIRT Jan | 62 |
8 | CALMEJANE Lilian | 70 |
9 | MARIN Matej | 67 |
11 | GOLČER Jure | 66.5 |
12 | MEURISSE Xandro | 71 |
13 | VERVAEKE Louis | 68 |
14 | GUERIN Alexis | 64 |
16 | DERNIES Tom | 68 |
17 | FOLIFOROV Alexander | 61 |
18 | EIKING Odd Christian | 75 |
19 | BEUKEBOOM Dion | 88 |
20 | GRELLIER Fabien | 65 |
23 | DRON Boris | 72 |
24 | VLIEGEN Loïc | 70 |
25 | VAN ROOY Kenneth | 70 |
27 | KONRAD Patrick | 64 |