Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Planckaert
1
65 kgDemoitié
2
69 kgTronet
3
67 kgŠiškevičius
5
80 kgCalleeuw
6
71 kgEiking
7
75 kgGerts
8
71 kgMeurisse
11
71 kgGiraud
12
71 kgAntomarchi
13
70 kgLammertink
14
68 kgLoubet
15
66 kgClaeys
16
77 kgMaldonado
18
57 kgKonovalovas
19
74 kgBlain
20
82 kgDelfosse
23
73 kg
1
65 kgDemoitié
2
69 kgTronet
3
67 kgŠiškevičius
5
80 kgCalleeuw
6
71 kgEiking
7
75 kgGerts
8
71 kgMeurisse
11
71 kgGiraud
12
71 kgAntomarchi
13
70 kgLammertink
14
68 kgLoubet
15
66 kgClaeys
16
77 kgMaldonado
18
57 kgKonovalovas
19
74 kgBlain
20
82 kgDelfosse
23
73 kg
Weight (KG) →
Result →
82
57
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | PLANCKAERT Baptiste | 65 |
2 | DEMOITIÉ Antoine | 69 |
3 | TRONET Steven | 67 |
5 | ŠIŠKEVIČIUS Evaldas | 80 |
6 | CALLEEUW Joeri | 71 |
7 | EIKING Odd Christian | 75 |
8 | GERTS Floris | 71 |
11 | MEURISSE Xandro | 71 |
12 | GIRAUD Benjamin | 71 |
13 | ANTOMARCHI Julien | 70 |
14 | LAMMERTINK Steven | 68 |
15 | LOUBET Julien | 66 |
16 | CLAEYS Dimitri | 77 |
18 | MALDONADO Anthony | 57 |
19 | KONOVALOVAS Ignatas | 74 |
20 | BLAIN Alexandre | 82 |
23 | DELFOSSE Sébastien | 73 |