Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 18
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Planckaert
1
65 kgDupont
2
72 kgVereecken
3
72 kgVantomme
4
63 kgJakin
5
71 kgCavagna
6
78 kgDruyts
7
69 kgPardini
8
68 kgFeillu
11
62 kgMeurisse
12
71 kgMaitre
13
71 kgKämna
14
65 kgOrrico
15
70 kgMasnada
16
65 kgEibegger
18
68 kgLeveau
23
67 kgScott
25
68 kgSchorn
28
72 kgJacobs
29
68 kgZabala
30
61 kgStassen
31
66 kgAriesen
32
70 kgvan den Berg
33
78 kgRabitsch
35
69 kg
1
65 kgDupont
2
72 kgVereecken
3
72 kgVantomme
4
63 kgJakin
5
71 kgCavagna
6
78 kgDruyts
7
69 kgPardini
8
68 kgFeillu
11
62 kgMeurisse
12
71 kgMaitre
13
71 kgKämna
14
65 kgOrrico
15
70 kgMasnada
16
65 kgEibegger
18
68 kgLeveau
23
67 kgScott
25
68 kgSchorn
28
72 kgJacobs
29
68 kgZabala
30
61 kgStassen
31
66 kgAriesen
32
70 kgvan den Berg
33
78 kgRabitsch
35
69 kg
Weight (KG) →
Result →
78
61
1
35
# | Rider | Weight (KG) |
---|---|---|
1 | PLANCKAERT Baptiste | 65 |
2 | DUPONT Timothy | 72 |
3 | VEREECKEN Nicolas | 72 |
4 | VANTOMME Maxime | 63 |
5 | JAKIN Alo | 71 |
6 | CAVAGNA Rémi | 78 |
7 | DRUYTS Gerry | 69 |
8 | PARDINI Olivier | 68 |
11 | FEILLU Romain | 62 |
12 | MEURISSE Xandro | 71 |
13 | MAITRE Florian | 71 |
14 | KÄMNA Lennard | 65 |
15 | ORRICO Davide | 70 |
16 | MASNADA Fausto | 65 |
18 | EIBEGGER Markus | 68 |
23 | LEVEAU Jérémy | 67 |
25 | SCOTT Jacob | 68 |
28 | SCHORN Daniel | 72 |
29 | JACOBS Pieter | 68 |
30 | ZABALA Josu | 61 |
31 | STASSEN Julien | 66 |
32 | ARIESEN Tim | 70 |
33 | VAN DEN BERG Julius | 78 |
35 | RABITSCH Stephan | 69 |