Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 53
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Planckaert
1
65 kgDupont
2
72 kgVereecken
3
72 kgVantomme
4
63 kgCavagna
5
78 kgPardini
6
68 kgDruyts
8
69 kgFeillu
9
62 kgMeurisse
10
71 kgMaitre
11
71 kgKämna
12
65 kgOrrico
13
70 kgLecroq
16
70 kgEibegger
18
68 kgAntomarchi
20
70 kgJakin
21
71 kgLeveau
22
67 kgScott
24
68 kgJacobs
26
68 kgZabala
28
61 kgStassen
29
66 kgRabitsch
32
69 kg
1
65 kgDupont
2
72 kgVereecken
3
72 kgVantomme
4
63 kgCavagna
5
78 kgPardini
6
68 kgDruyts
8
69 kgFeillu
9
62 kgMeurisse
10
71 kgMaitre
11
71 kgKämna
12
65 kgOrrico
13
70 kgLecroq
16
70 kgEibegger
18
68 kgAntomarchi
20
70 kgJakin
21
71 kgLeveau
22
67 kgScott
24
68 kgJacobs
26
68 kgZabala
28
61 kgStassen
29
66 kgRabitsch
32
69 kg
Weight (KG) →
Result →
78
61
1
32
# | Rider | Weight (KG) |
---|---|---|
1 | PLANCKAERT Baptiste | 65 |
2 | DUPONT Timothy | 72 |
3 | VEREECKEN Nicolas | 72 |
4 | VANTOMME Maxime | 63 |
5 | CAVAGNA Rémi | 78 |
6 | PARDINI Olivier | 68 |
8 | DRUYTS Gerry | 69 |
9 | FEILLU Romain | 62 |
10 | MEURISSE Xandro | 71 |
11 | MAITRE Florian | 71 |
12 | KÄMNA Lennard | 65 |
13 | ORRICO Davide | 70 |
16 | LECROQ Jérémy | 70 |
18 | EIBEGGER Markus | 68 |
20 | ANTOMARCHI Julien | 70 |
21 | JAKIN Alo | 71 |
22 | LEVEAU Jérémy | 67 |
24 | SCOTT Jacob | 68 |
26 | JACOBS Pieter | 68 |
28 | ZABALA Josu | 61 |
29 | STASSEN Julien | 66 |
32 | RABITSCH Stephan | 69 |