Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 7
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Kämna
1
65 kgSchlegel
2
72 kgAriesen
3
70 kgSchultz
4
68 kgGhebreigzabhier
5
68 kgSchachmann
6
71 kgBico
10
64 kgMolly
11
61 kgOurselin
12
70 kgVincent
13
62 kgTenbrock
14
74 kgJourniaux
17
63 kgCavagna
18
78 kgSeigle
19
63 kgSchreurs
22
69 kgMaitre
23
71 kgZakarin
26
65 kgPer
27
68 kgDeruette
28
70 kgGibbons
30
70 kgde Bod
31
66 kgvan den Berg
32
78 kgScott
33
68 kg
1
65 kgSchlegel
2
72 kgAriesen
3
70 kgSchultz
4
68 kgGhebreigzabhier
5
68 kgSchachmann
6
71 kgBico
10
64 kgMolly
11
61 kgOurselin
12
70 kgVincent
13
62 kgTenbrock
14
74 kgJourniaux
17
63 kgCavagna
18
78 kgSeigle
19
63 kgSchreurs
22
69 kgMaitre
23
71 kgZakarin
26
65 kgPer
27
68 kgDeruette
28
70 kgGibbons
30
70 kgde Bod
31
66 kgvan den Berg
32
78 kgScott
33
68 kg
Weight (KG) →
Result →
78
61
1
33
# | Rider | Weight (KG) |
---|---|---|
1 | KÄMNA Lennard | 65 |
2 | SCHLEGEL Michal | 72 |
3 | ARIESEN Tim | 70 |
4 | SCHULTZ Nick | 68 |
5 | GHEBREIGZABHIER Amanuel | 68 |
6 | SCHACHMANN Maximilian | 71 |
10 | BICO Nuno | 64 |
11 | MOLLY Kenny | 61 |
12 | OURSELIN Paul | 70 |
13 | VINCENT Léo | 62 |
14 | TENBROCK Jonas | 74 |
17 | JOURNIAUX Axel | 63 |
18 | CAVAGNA Rémi | 78 |
19 | SEIGLE Romain | 63 |
22 | SCHREURS Hamish | 69 |
23 | MAITRE Florian | 71 |
26 | ZAKARIN Aydar | 65 |
27 | PER Gorazd | 68 |
28 | DERUETTE Thomas | 70 |
30 | GIBBONS Ryan | 70 |
31 | DE BOD Stefan | 66 |
32 | VAN DEN BERG Julius | 78 |
33 | SCOTT Jacob | 68 |