Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 11
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Guldhammer
1
66 kgHoelgaard
2
74 kgLoubet
3
66 kgIsta
4
70 kgRogina
5
70 kgSkjerping
6
71 kgZoidl
7
63 kgEibegger
8
68 kgWilliams
9
59 kgDavies
10
66 kgMortier
11
66 kgLambrecht
12
56 kgDalla Valle
14
73 kgGarosio
16
58 kgVantomme
17
63 kgHaller
21
68 kgHagen
22
65 kgVermeulen
25
64 kgWeinstein
26
80 kg
1
66 kgHoelgaard
2
74 kgLoubet
3
66 kgIsta
4
70 kgRogina
5
70 kgSkjerping
6
71 kgZoidl
7
63 kgEibegger
8
68 kgWilliams
9
59 kgDavies
10
66 kgMortier
11
66 kgLambrecht
12
56 kgDalla Valle
14
73 kgGarosio
16
58 kgVantomme
17
63 kgHaller
21
68 kgHagen
22
65 kgVermeulen
25
64 kgWeinstein
26
80 kg
Weight (KG) →
Result →
80
56
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | GULDHAMMER Rasmus | 66 |
2 | HOELGAARD Markus | 74 |
3 | LOUBET Julien | 66 |
4 | ISTA Kevyn | 70 |
5 | ROGINA Radoslav | 70 |
6 | SKJERPING Kristoffer | 71 |
7 | ZOIDL Riccardo | 63 |
8 | EIBEGGER Markus | 68 |
9 | WILLIAMS Stephen | 59 |
10 | DAVIES Scott | 66 |
11 | MORTIER Julien | 66 |
12 | LAMBRECHT Bjorg | 56 |
14 | DALLA VALLE Nicolas | 73 |
16 | GAROSIO Andrea | 58 |
17 | VANTOMME Maxime | 63 |
21 | HALLER Patrick | 68 |
22 | HAGEN Carl Fredrik | 65 |
25 | VERMEULEN Emiel | 64 |
26 | WEINSTEIN Domenic | 80 |