Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 21
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Maldonado
1
57 kgBol
2
83 kgMurphy
3
81 kgKrieger
4
71 kgCornu
5
66 kgOliveira
6
68 kgHurel
7
66 kgČerný
8
75 kgMarchand
9
61 kgCañaveral
10
60 kgDomagalski
11
77 kgOliveira
12
66 kgKragh Andersen
14
72 kgEibegger
15
68 kgMolly
16
61 kgKamp
17
74 kgAntomarchi
18
70 kgMertens
20
67 kgOurselin
21
70 kgLienhard
22
73 kgZoidl
23
63 kgFortin
25
78 kgGouault
26
61 kgPolnický
28
68 kg
1
57 kgBol
2
83 kgMurphy
3
81 kgKrieger
4
71 kgCornu
5
66 kgOliveira
6
68 kgHurel
7
66 kgČerný
8
75 kgMarchand
9
61 kgCañaveral
10
60 kgDomagalski
11
77 kgOliveira
12
66 kgKragh Andersen
14
72 kgEibegger
15
68 kgMolly
16
61 kgKamp
17
74 kgAntomarchi
18
70 kgMertens
20
67 kgOurselin
21
70 kgLienhard
22
73 kgZoidl
23
63 kgFortin
25
78 kgGouault
26
61 kgPolnický
28
68 kg
Weight (KG) →
Result →
83
57
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | MALDONADO Anthony | 57 |
2 | BOL Cees | 83 |
3 | MURPHY John | 81 |
4 | KRIEGER Alexander | 71 |
5 | CORNU Jérémy | 66 |
6 | OLIVEIRA Ivo | 68 |
7 | HUREL Tony | 66 |
8 | ČERNÝ Josef | 75 |
9 | MARCHAND Gianni | 61 |
10 | CAÑAVERAL Johnatan | 60 |
11 | DOMAGALSKI Karol | 77 |
12 | OLIVEIRA Rui | 66 |
14 | KRAGH ANDERSEN Asbjørn | 72 |
15 | EIBEGGER Markus | 68 |
16 | MOLLY Kenny | 61 |
17 | KAMP Alexander | 74 |
18 | ANTOMARCHI Julien | 70 |
20 | MERTENS Julian | 67 |
21 | OURSELIN Paul | 70 |
22 | LIENHARD Fabian | 73 |
23 | ZOIDL Riccardo | 63 |
25 | FORTIN Filippo | 78 |
26 | GOUAULT Pierre | 61 |
28 | POLNICKÝ Jiří | 68 |