Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 14
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Cañaveral
1
60 kgMertens
2
67 kgSchelling
3
66 kgOliveira
5
66 kgTasset
6
63 kgBarta
7
61 kgOliveira
9
68 kgSchultz
10
60 kgAntunes
11
55 kgMoniquet
12
61 kgGoossens
13
64 kgPestiaux
14
58 kgHuys
16
61 kgVanhoucke
18
65 kgWilliams
19
59 kgOtruba
20
75 kgAlmeida
22
63 kgMolly
23
61 kgMaas
26
70 kgTschernoster
28
62 kgHaller
29
68 kgVan Poucke
30
68 kgNonnez
32
63 kg
1
60 kgMertens
2
67 kgSchelling
3
66 kgOliveira
5
66 kgTasset
6
63 kgBarta
7
61 kgOliveira
9
68 kgSchultz
10
60 kgAntunes
11
55 kgMoniquet
12
61 kgGoossens
13
64 kgPestiaux
14
58 kgHuys
16
61 kgVanhoucke
18
65 kgWilliams
19
59 kgOtruba
20
75 kgAlmeida
22
63 kgMolly
23
61 kgMaas
26
70 kgTschernoster
28
62 kgHaller
29
68 kgVan Poucke
30
68 kgNonnez
32
63 kg
Weight (KG) →
Result →
75
55
1
32
# | Rider | Weight (KG) |
---|---|---|
1 | CAÑAVERAL Johnatan | 60 |
2 | MERTENS Julian | 67 |
3 | SCHELLING Ide | 66 |
5 | OLIVEIRA Rui | 66 |
6 | TASSET Marvin | 63 |
7 | BARTA Will | 61 |
9 | OLIVEIRA Ivo | 68 |
10 | SCHULTZ Jesper | 60 |
11 | ANTUNES Tiago | 55 |
12 | MONIQUET Sylvain | 61 |
13 | GOOSSENS Kobe | 64 |
14 | PESTIAUX Yann | 58 |
16 | HUYS Laurens | 61 |
18 | VANHOUCKE Harm | 65 |
19 | WILLIAMS Stephen | 59 |
20 | OTRUBA Jakub | 75 |
22 | ALMEIDA João | 63 |
23 | MOLLY Kenny | 61 |
26 | MAAS Jan | 70 |
28 | TSCHERNOSTER Jan | 62 |
29 | HALLER Patrick | 68 |
30 | VAN POUCKE Aaron | 68 |
32 | NONNEZ Théo | 63 |