Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 36
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Groves
1
76 kgGate
2
71 kgKamp
3
74 kgMertens
4
67 kgKump
5
68 kgQuinn
6
67 kgSisr
7
72 kgHennessy
8
80 kgHoelgaard
10
74 kgOrrico
12
70 kgOurselin
13
70 kgThalmann
15
61 kgPaterski
16
73 kgRekita
19
70 kgLeknessund
20
72 kgGoossens
21
64 kgShumov
22
65 kgVeyhe
23
77 kg
1
76 kgGate
2
71 kgKamp
3
74 kgMertens
4
67 kgKump
5
68 kgQuinn
6
67 kgSisr
7
72 kgHennessy
8
80 kgHoelgaard
10
74 kgOrrico
12
70 kgOurselin
13
70 kgThalmann
15
61 kgPaterski
16
73 kgRekita
19
70 kgLeknessund
20
72 kgGoossens
21
64 kgShumov
22
65 kgVeyhe
23
77 kg
Weight (KG) →
Result →
80
61
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | GROVES Kaden | 76 |
2 | GATE Aaron | 71 |
3 | KAMP Alexander | 74 |
4 | MERTENS Julian | 67 |
5 | KUMP Marko | 68 |
6 | QUINN Sean | 67 |
7 | SISR František | 72 |
8 | HENNESSY Jacob | 80 |
10 | HOELGAARD Markus | 74 |
12 | ORRICO Davide | 70 |
13 | OURSELIN Paul | 70 |
15 | THALMANN Roland | 61 |
16 | PATERSKI Maciej | 73 |
19 | REKITA Szymon | 70 |
20 | LEKNESSUND Andreas | 72 |
21 | GOOSSENS Kobe | 64 |
22 | SHUMOV Nikolai | 65 |
23 | VEYHE Torkil | 77 |