Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 59
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Groves
1
76 kgKamp
2
74 kgGate
3
71 kgMertens
4
67 kgPaterski
5
73 kgKump
6
68 kgQuinn
7
67 kgSisr
8
72 kgLeknessund
9
72 kgHennessy
10
80 kgGoossens
11
64 kgRekita
12
70 kgThalmann
14
61 kgHoelgaard
15
74 kgOrrico
17
70 kgOurselin
18
70 kgVan Gils
20
63 kgChampoussin
23
61 kgShumov
24
65 kgVeyhe
25
77 kgGall
26
66 kgProdhomme
27
63 kg
1
76 kgKamp
2
74 kgGate
3
71 kgMertens
4
67 kgPaterski
5
73 kgKump
6
68 kgQuinn
7
67 kgSisr
8
72 kgLeknessund
9
72 kgHennessy
10
80 kgGoossens
11
64 kgRekita
12
70 kgThalmann
14
61 kgHoelgaard
15
74 kgOrrico
17
70 kgOurselin
18
70 kgVan Gils
20
63 kgChampoussin
23
61 kgShumov
24
65 kgVeyhe
25
77 kgGall
26
66 kgProdhomme
27
63 kg
Weight (KG) →
Result →
80
61
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | GROVES Kaden | 76 |
2 | KAMP Alexander | 74 |
3 | GATE Aaron | 71 |
4 | MERTENS Julian | 67 |
5 | PATERSKI Maciej | 73 |
6 | KUMP Marko | 68 |
7 | QUINN Sean | 67 |
8 | SISR František | 72 |
9 | LEKNESSUND Andreas | 72 |
10 | HENNESSY Jacob | 80 |
11 | GOOSSENS Kobe | 64 |
12 | REKITA Szymon | 70 |
14 | THALMANN Roland | 61 |
15 | HOELGAARD Markus | 74 |
17 | ORRICO Davide | 70 |
18 | OURSELIN Paul | 70 |
20 | VAN GILS Maxim | 63 |
23 | CHAMPOUSSIN Clément | 61 |
24 | SHUMOV Nikolai | 65 |
25 | VEYHE Torkil | 77 |
26 | GALL Felix | 66 |
27 | PRODHOMME Nicolas | 63 |