Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 45
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Tronchon
1
72 kgCoqueret
2
69 kgJarnet
4
63 kgHayter
6
66 kgEriksson
7
64 kgZahálka
8
73 kgBárta
9
75 kgLe Berre
11
68 kgTurek
12
72 kgMaas
14
70 kgOtruba
15
75 kgOnley
18
62 kgBlanc
19
59 kgHuys
20
61 kgLabrosse
21
65 kgReutimann
22
71 kgLópez
23
55 kgDrizners
24
70 kgRiccitello
25
55 kgFrigo
26
70 kgMangertseder
28
69 kg
1
72 kgCoqueret
2
69 kgJarnet
4
63 kgHayter
6
66 kgEriksson
7
64 kgZahálka
8
73 kgBárta
9
75 kgLe Berre
11
68 kgTurek
12
72 kgMaas
14
70 kgOtruba
15
75 kgOnley
18
62 kgBlanc
19
59 kgHuys
20
61 kgLabrosse
21
65 kgReutimann
22
71 kgLópez
23
55 kgDrizners
24
70 kgRiccitello
25
55 kgFrigo
26
70 kgMangertseder
28
69 kg
Weight (KG) →
Result →
75
55
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | TRONCHON Bastien | 72 |
2 | COQUERET Louis | 69 |
4 | JARNET Maxime | 63 |
6 | HAYTER Leo | 66 |
7 | ERIKSSON Lucas | 64 |
8 | ZAHÁLKA Matěj | 73 |
9 | BÁRTA Jan | 75 |
11 | LE BERRE Mathis | 68 |
12 | TUREK Daniel | 72 |
14 | MAAS Jan | 70 |
15 | OTRUBA Jakub | 75 |
18 | ONLEY Oscar | 62 |
19 | BLANC Arthur | 59 |
20 | HUYS Laurens | 61 |
21 | LABROSSE Jordan | 65 |
22 | REUTIMANN Matthias | 71 |
23 | LÓPEZ Harold Martín | 55 |
24 | DRIZNERS Jarrad | 70 |
25 | RICCITELLO Matthew | 55 |
26 | FRIGO Marco | 70 |
28 | MANGERTSEDER Matthias | 69 |