Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 59
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Kukrle
1
73 kgReinders
2
78.1 kgEriksson
3
64 kgSlock
4
78 kgStosz
5
70 kgNeuman
6
72 kgLamperti
7
74 kgGrégoire
9
64 kgDe Pooter
10
66 kgBaudin
12
64 kgde Vries
13
66 kgPaulus
14
62 kgVoisard
15
56 kgReinderink
16
67 kgGermani
17
62 kgOnley
19
62 kgCharrin
20
67 kgThompson
21
66 kg
1
73 kgReinders
2
78.1 kgEriksson
3
64 kgSlock
4
78 kgStosz
5
70 kgNeuman
6
72 kgLamperti
7
74 kgGrégoire
9
64 kgDe Pooter
10
66 kgBaudin
12
64 kgde Vries
13
66 kgPaulus
14
62 kgVoisard
15
56 kgReinderink
16
67 kgGermani
17
62 kgOnley
19
62 kgCharrin
20
67 kgThompson
21
66 kg
Weight (KG) →
Result →
78.1
56
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | KUKRLE Michael | 73 |
2 | REINDERS Elmar | 78.1 |
3 | ERIKSSON Lucas | 64 |
4 | SLOCK Liam | 78 |
5 | STOSZ Patryk | 70 |
6 | NEUMAN Dominik | 72 |
7 | LAMPERTI Luke | 74 |
9 | GRÉGOIRE Romain | 64 |
10 | DE POOTER Dries | 66 |
12 | BAUDIN Alex | 64 |
13 | DE VRIES Hartthijs | 66 |
14 | PAULUS Milan | 62 |
15 | VOISARD Yannis | 56 |
16 | REINDERINK Pepijn | 67 |
17 | GERMANI Lorenzo | 62 |
19 | ONLEY Oscar | 62 |
20 | CHARRIN Aloïs | 67 |
21 | THOMPSON Reuben | 66 |