Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 39
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Slock
1
78 kgSheehan
2
69 kgKukrle
3
73 kgGermani
4
62 kgThompson
5
66 kgMiles
6
64 kgOnley
7
62 kgBrun
8
64 kgFrigo
9
70 kgEriksson
10
64 kgLecerf
12
54 kgGelders
13
66 kgReinderink
14
67 kgGrégoire
16
64 kgCharrin
17
67 kgRafferty
18
65 kgGuerin
19
64 kgBregnhøj
20
63 kgBudziński
21
70 kgLeclainche
23
65 kg
1
78 kgSheehan
2
69 kgKukrle
3
73 kgGermani
4
62 kgThompson
5
66 kgMiles
6
64 kgOnley
7
62 kgBrun
8
64 kgFrigo
9
70 kgEriksson
10
64 kgLecerf
12
54 kgGelders
13
66 kgReinderink
14
67 kgGrégoire
16
64 kgCharrin
17
67 kgRafferty
18
65 kgGuerin
19
64 kgBregnhøj
20
63 kgBudziński
21
70 kgLeclainche
23
65 kg
Weight (KG) →
Result →
78
54
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | SLOCK Liam | 78 |
2 | SHEEHAN Riley | 69 |
3 | KUKRLE Michael | 73 |
4 | GERMANI Lorenzo | 62 |
5 | THOMPSON Reuben | 66 |
6 | MILES Carson | 64 |
7 | ONLEY Oscar | 62 |
8 | BRUN Nils | 64 |
9 | FRIGO Marco | 70 |
10 | ERIKSSON Lucas | 64 |
12 | LECERF Junior | 54 |
13 | GELDERS Gil | 66 |
14 | REINDERINK Pepijn | 67 |
16 | GRÉGOIRE Romain | 64 |
17 | CHARRIN Aloïs | 67 |
18 | RAFFERTY Darren | 65 |
19 | GUERIN Alexis | 64 |
20 | BREGNHØJ Mathias | 63 |
21 | BUDZIŃSKI Marcin | 70 |
23 | LECLAINCHE Gwen | 65 |