Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 35
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Stosz
1
70 kgGrégoire
2
64 kgGermani
3
62 kgKukrle
4
73 kgFrigo
5
70 kgReinders
6
78.1 kgLamperti
8
74 kgDe Pooter
9
66 kgde Vries
10
66 kgEriksson
11
64 kgSlock
12
78 kgNeuman
13
72 kgBaudin
15
64 kgRaisberg
16
67 kgOnley
17
62 kgVoisard
18
56 kgReinderink
19
67 kgCharrin
22
67 kgThompson
23
66 kgSheehan
24
69 kg
1
70 kgGrégoire
2
64 kgGermani
3
62 kgKukrle
4
73 kgFrigo
5
70 kgReinders
6
78.1 kgLamperti
8
74 kgDe Pooter
9
66 kgde Vries
10
66 kgEriksson
11
64 kgSlock
12
78 kgNeuman
13
72 kgBaudin
15
64 kgRaisberg
16
67 kgOnley
17
62 kgVoisard
18
56 kgReinderink
19
67 kgCharrin
22
67 kgThompson
23
66 kgSheehan
24
69 kg
Weight (KG) →
Result →
78.1
56
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | STOSZ Patryk | 70 |
2 | GRÉGOIRE Romain | 64 |
3 | GERMANI Lorenzo | 62 |
4 | KUKRLE Michael | 73 |
5 | FRIGO Marco | 70 |
6 | REINDERS Elmar | 78.1 |
8 | LAMPERTI Luke | 74 |
9 | DE POOTER Dries | 66 |
10 | DE VRIES Hartthijs | 66 |
11 | ERIKSSON Lucas | 64 |
12 | SLOCK Liam | 78 |
13 | NEUMAN Dominik | 72 |
15 | BAUDIN Alex | 64 |
16 | RAISBERG Nadav | 67 |
17 | ONLEY Oscar | 62 |
18 | VOISARD Yannis | 56 |
19 | REINDERINK Pepijn | 67 |
22 | CHARRIN Aloïs | 67 |
23 | THOMPSON Reuben | 66 |
24 | SHEEHAN Riley | 69 |