Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 7
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Kukrle
1
73 kgSimmons
4
68 kgBregnhøj
5
63 kgCapron
6
59 kgVan de Wynkele
7
75 kgvan Bekkum
8
62 kgLecerf
10
54 kgZahálka
11
73 kgKulset
12
58 kgGelders
13
66 kgGruel
15
70 kgKärsten
16
75 kgPellaud
17
70 kgChristen
18
60 kgWarlop
20
71 kgvan der Poel
21
75 kgVermoote
22
73 kgMorgado
23
71 kgLaurance
24
66 kgWilksch
25
62 kgGolliker
26
67 kgSchmidt
27
78 kgStokbro
28
70 kg
1
73 kgSimmons
4
68 kgBregnhøj
5
63 kgCapron
6
59 kgVan de Wynkele
7
75 kgvan Bekkum
8
62 kgLecerf
10
54 kgZahálka
11
73 kgKulset
12
58 kgGelders
13
66 kgGruel
15
70 kgKärsten
16
75 kgPellaud
17
70 kgChristen
18
60 kgWarlop
20
71 kgvan der Poel
21
75 kgVermoote
22
73 kgMorgado
23
71 kgLaurance
24
66 kgWilksch
25
62 kgGolliker
26
67 kgSchmidt
27
78 kgStokbro
28
70 kg
Weight (KG) →
Result →
78
54
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | KUKRLE Michael | 73 |
4 | SIMMONS Colby | 68 |
5 | BREGNHØJ Mathias | 63 |
6 | CAPRON Rémi | 59 |
7 | VAN DE WYNKELE Lorenz | 75 |
8 | VAN BEKKUM Darren | 62 |
10 | LECERF Junior | 54 |
11 | ZAHÁLKA Matěj | 73 |
12 | KULSET Johannes | 58 |
13 | GELDERS Gil | 66 |
15 | GRUEL Thibaud | 70 |
16 | KÄRSTEN Moritz | 75 |
17 | PELLAUD Simon | 70 |
18 | CHRISTEN Jan | 60 |
20 | WARLOP Jordi | 71 |
21 | VAN DER POEL David | 75 |
22 | VERMOOTE Jelle | 73 |
23 | MORGADO António | 71 |
24 | LAURANCE Axel | 66 |
25 | WILKSCH Hannes | 62 |
26 | GOLLIKER Joshua | 67 |
27 | SCHMIDT Jakob | 78 |
28 | STOKBRO Andreas | 70 |