Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 24
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Blackmore
1
66 kgGruel
2
70 kgDrege
3
78 kgMagnier
4
70 kgCôté
5
74 kgBregnhøj
6
63 kgAdamietz
7
61 kgSavino
8
70 kgKubiš
10
70 kgHannes
11
62 kgBrennan
12
68 kgThomas
13
61 kgRouland
14
55 kgToussaint
16
64 kgDirnbauer
18
67 kgGuerin
19
65 kgGilmore
20
70 kgWidar
23
54 kgZahálka
24
73 kgvan der Werff
25
60 kgGualdi
26
61 kgŠtoček
29
80 kgChamerat Dumont
30
70 kg
1
66 kgGruel
2
70 kgDrege
3
78 kgMagnier
4
70 kgCôté
5
74 kgBregnhøj
6
63 kgAdamietz
7
61 kgSavino
8
70 kgKubiš
10
70 kgHannes
11
62 kgBrennan
12
68 kgThomas
13
61 kgRouland
14
55 kgToussaint
16
64 kgDirnbauer
18
67 kgGuerin
19
65 kgGilmore
20
70 kgWidar
23
54 kgZahálka
24
73 kgvan der Werff
25
60 kgGualdi
26
61 kgŠtoček
29
80 kgChamerat Dumont
30
70 kg
Weight (KG) →
Result →
80
54
1
30
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | BLACKMORE Joseph | 66 |
| 2 | GRUEL Thibaud | 70 |
| 3 | DREGE André | 78 |
| 4 | MAGNIER Paul | 70 |
| 5 | CÔTÉ Pier-André | 74 |
| 6 | BREGNHØJ Mathias | 63 |
| 7 | ADAMIETZ Johannes | 61 |
| 8 | SAVINO Federico | 70 |
| 10 | KUBIŠ Lukáš | 70 |
| 11 | HANNES Victor | 62 |
| 12 | BRENNAN Matthew | 68 |
| 13 | THOMAS Théo | 61 |
| 14 | ROULAND Louis | 55 |
| 16 | TOUSSAINT Wouter | 64 |
| 18 | DIRNBAUER Josef | 67 |
| 19 | GUERIN Alexis | 65 |
| 20 | GILMORE Brady | 70 |
| 23 | WIDAR Jarno | 54 |
| 24 | ZAHÁLKA Matěj | 73 |
| 25 | VAN DER WERFF Thom | 60 |
| 26 | GUALDI Simone | 61 |
| 29 | ŠTOČEK Matúš | 80 |
| 30 | CHAMERAT DUMONT Antony | 70 |