Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 15
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Blackmore
1
66 kgMagnier
2
70 kgKubiš
3
70 kgAdamietz
4
61 kgGruel
5
70 kgThomas
6
61 kgDrege
7
78 kgBregnhøj
8
63 kgCôté
9
74 kgSavino
10
70 kgHannes
13
62 kgRouland
14
55 kgGilmore
15
70 kgToussaint
18
64 kgGuerin
19
64 kgZahálka
20
73 kgWidar
21
54 kgDirnbauer
22
67 kgvan der Werff
25
60 kgŠtoček
29
80 kgZangerle
30
68 kg
1
66 kgMagnier
2
70 kgKubiš
3
70 kgAdamietz
4
61 kgGruel
5
70 kgThomas
6
61 kgDrege
7
78 kgBregnhøj
8
63 kgCôté
9
74 kgSavino
10
70 kgHannes
13
62 kgRouland
14
55 kgGilmore
15
70 kgToussaint
18
64 kgGuerin
19
64 kgZahálka
20
73 kgWidar
21
54 kgDirnbauer
22
67 kgvan der Werff
25
60 kgŠtoček
29
80 kgZangerle
30
68 kg
Weight (KG) →
Result →
80
54
1
30
# | Rider | Weight (KG) |
---|---|---|
1 | BLACKMORE Joseph | 66 |
2 | MAGNIER Paul | 70 |
3 | KUBIŠ Lukáš | 70 |
4 | ADAMIETZ Johannes | 61 |
5 | GRUEL Thibaud | 70 |
6 | THOMAS Théo | 61 |
7 | DREGE André | 78 |
8 | BREGNHØJ Mathias | 63 |
9 | CÔTÉ Pier-André | 74 |
10 | SAVINO Federico | 70 |
13 | HANNES Victor | 62 |
14 | ROULAND Louis | 55 |
15 | GILMORE Brady | 70 |
18 | TOUSSAINT Wouter | 64 |
19 | GUERIN Alexis | 64 |
20 | ZAHÁLKA Matěj | 73 |
21 | WIDAR Jarno | 54 |
22 | DIRNBAUER Josef | 67 |
25 | VAN DER WERFF Thom | 60 |
29 | ŠTOČEK Matúš | 80 |
30 | ZANGERLE Emanuel | 68 |