Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 34
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Deruyter
1
77 kgDuboc
2
67 kgVan Lerberghe
3
79 kgAnseeuw
4
76 kgWynsdau
5
82 kgAlavoine
6
73 kgVerdickt
7
76 kgKippert
8
71 kgPelletier
9
72 kgNeffati
10
68 kgAsse
12
72 kgNempon
13
58 kgChassot
14
72 kgPaul
18
77 kgHuret
19
68 kgDesmedt
23
64 kgBuysse
24
68 kgHanlet
25
70 kgHeusghem
26
86 kgMénager
27
68 kg
1
77 kgDuboc
2
67 kgVan Lerberghe
3
79 kgAnseeuw
4
76 kgWynsdau
5
82 kgAlavoine
6
73 kgVerdickt
7
76 kgKippert
8
71 kgPelletier
9
72 kgNeffati
10
68 kgAsse
12
72 kgNempon
13
58 kgChassot
14
72 kgPaul
18
77 kgHuret
19
68 kgDesmedt
23
64 kgBuysse
24
68 kgHanlet
25
70 kgHeusghem
26
86 kgMénager
27
68 kg
Weight (KG) →
Result →
86
58
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | DERUYTER Charles | 77 |
2 | DUBOC Paul | 67 |
3 | VAN LERBERGHE Henri | 79 |
4 | ANSEEUW Urbain | 76 |
5 | WYNSDAU Théodore | 82 |
6 | ALAVOINE Jean | 73 |
7 | VERDICKT Hubert | 76 |
8 | KIPPERT Charles | 71 |
9 | PELLETIER José | 72 |
10 | NEFFATI Ali | 68 |
12 | ASSE Robert | 72 |
13 | NEMPON Jules | 58 |
14 | CHASSOT René | 72 |
18 | PAUL Ernest | 77 |
19 | HURET André | 68 |
23 | DESMEDT Albert | 64 |
24 | BUYSSE Lucien | 68 |
25 | HANLET Henri | 70 |
26 | HEUSGHEM Hector | 86 |
27 | MÉNAGER Henri | 68 |