Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 6
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
McEwen
1
67 kgDean
2
72 kgPlanckaert
3
70 kgO'Grady
4
73 kgEisel
5
74 kgLöwik
6
72 kgHondo
7
73 kgTeutenberg
8
66 kgJégou
9
71 kgVaitkus
10
75 kgHammond
11
71 kgClerc
12
71 kgRadochla
13
70 kgCaethoven
14
67 kgWillems
15
67 kgMetlushenko
16
82 kgHunter
17
72 kgSentjens
19
75 kgMattan
20
69 kg
1
67 kgDean
2
72 kgPlanckaert
3
70 kgO'Grady
4
73 kgEisel
5
74 kgLöwik
6
72 kgHondo
7
73 kgTeutenberg
8
66 kgJégou
9
71 kgVaitkus
10
75 kgHammond
11
71 kgClerc
12
71 kgRadochla
13
70 kgCaethoven
14
67 kgWillems
15
67 kgMetlushenko
16
82 kgHunter
17
72 kgSentjens
19
75 kgMattan
20
69 kg
Weight (KG) →
Result →
82
66
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | MCEWEN Robbie | 67 |
2 | DEAN Julian | 72 |
3 | PLANCKAERT Jo | 70 |
4 | O'GRADY Stuart | 73 |
5 | EISEL Bernhard | 74 |
6 | LÖWIK Gerben | 72 |
7 | HONDO Danilo | 73 |
8 | TEUTENBERG Sven | 66 |
9 | JÉGOU Lilian | 71 |
10 | VAITKUS Tomas | 75 |
11 | HAMMOND Roger | 71 |
12 | CLERC Aurélien | 71 |
13 | RADOCHLA Steffen | 70 |
14 | CAETHOVEN Steven | 67 |
15 | WILLEMS Frederik | 67 |
16 | METLUSHENKO Yuri | 82 |
17 | HUNTER Robert | 72 |
19 | SENTJENS Roy | 75 |
20 | MATTAN Nico | 69 |