Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 6
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Verheyen
1
68 kgLöwik
2
72 kgRogers
3
74 kgRoesems
4
81 kgMattan
5
69 kgDean
6
72 kgRoulston
7
81 kgHøj
8
80 kgBaguet
9
67 kgVan Hecke
10
69 kgVan Petegem
11
70 kgGaumont
13
77 kgO'Grady
14
73 kgBruylandts
15
63 kgSassone
16
75 kgPlanckaert
17
70 kgEngoulvent
18
82 kgCapelle
19
75 kgHondo
20
73 kg
1
68 kgLöwik
2
72 kgRogers
3
74 kgRoesems
4
81 kgMattan
5
69 kgDean
6
72 kgRoulston
7
81 kgHøj
8
80 kgBaguet
9
67 kgVan Hecke
10
69 kgVan Petegem
11
70 kgGaumont
13
77 kgO'Grady
14
73 kgBruylandts
15
63 kgSassone
16
75 kgPlanckaert
17
70 kgEngoulvent
18
82 kgCapelle
19
75 kgHondo
20
73 kg
Weight (KG) →
Result →
82
63
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | VERHEYEN Geert | 68 |
2 | LÖWIK Gerben | 72 |
3 | ROGERS Michael | 74 |
4 | ROESEMS Bert | 81 |
5 | MATTAN Nico | 69 |
6 | DEAN Julian | 72 |
7 | ROULSTON Hayden | 81 |
8 | HØJ Frank | 80 |
9 | BAGUET Serge | 67 |
10 | VAN HECKE Preben | 69 |
11 | VAN PETEGEM Peter | 70 |
13 | GAUMONT Philippe | 77 |
14 | O'GRADY Stuart | 73 |
15 | BRUYLANDTS Dave | 63 |
16 | SASSONE Robert | 75 |
17 | PLANCKAERT Jo | 70 |
18 | ENGOULVENT Jimmy | 82 |
19 | CAPELLE Ludovic | 75 |
20 | HONDO Danilo | 73 |