Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 18
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Van Impe
1
75 kgHondo
2
73 kgVandborg
3
75 kgKaisen
4
82 kgMangel
5
83 kgVan De Walle
6
74 kgFinot
7
65 kgJégou
8
71 kgStubbe
9
66 kgFothen
10
71 kgRenshaw
11
74 kgGreipel
12
80 kgLjungblad
13
70 kgRenier
14
69 kgScheirlinckx
15
67 kgRosseler
16
78 kgNuyens
17
68 kgMarichal
18
72 kgCooke
19
75 kgHaussler
20
74 kgPate
21
73 kgKrauß
22
81 kg
1
75 kgHondo
2
73 kgVandborg
3
75 kgKaisen
4
82 kgMangel
5
83 kgVan De Walle
6
74 kgFinot
7
65 kgJégou
8
71 kgStubbe
9
66 kgFothen
10
71 kgRenshaw
11
74 kgGreipel
12
80 kgLjungblad
13
70 kgRenier
14
69 kgScheirlinckx
15
67 kgRosseler
16
78 kgNuyens
17
68 kgMarichal
18
72 kgCooke
19
75 kgHaussler
20
74 kgPate
21
73 kgKrauß
22
81 kg
Weight (KG) →
Result →
83
65
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | VAN IMPE Kevin | 75 |
2 | HONDO Danilo | 73 |
3 | VANDBORG Brian Bach | 75 |
4 | KAISEN Olivier | 82 |
5 | MANGEL Laurent | 83 |
6 | VAN DE WALLE Jurgen | 74 |
7 | FINOT Frédéric | 65 |
8 | JÉGOU Lilian | 71 |
9 | STUBBE Tom | 66 |
10 | FOTHEN Thomas | 71 |
11 | RENSHAW Mark | 74 |
12 | GREIPEL André | 80 |
13 | LJUNGBLAD Jonas | 70 |
14 | RENIER Franck | 69 |
15 | SCHEIRLINCKX Bert | 67 |
16 | ROSSELER Sébastien | 78 |
17 | NUYENS Nick | 68 |
18 | MARICHAL Thierry | 72 |
19 | COOKE Baden | 75 |
20 | HAUSSLER Heinrich | 74 |
21 | PATE Danny | 73 |
22 | KRAUß Sven | 81 |