Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 18
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Verbist
1
73 kgBichot
2
67 kgWynants
3
74 kgBellemakers
4
75 kgMarcato
5
67 kgFlecha
6
72 kgDuclos-Lassalle
7
63 kgGilbert
8
75 kgKrauß
9
81 kgWeening
10
68 kgCretskens
11
75 kgCancellara
12
80 kgEisel
13
74 kgEngoulvent
14
82 kgJérôme
15
65 kgde Jongh
16
76 kgScheirlinckx
17
78 kgVansummeren
18
79 kg
1
73 kgBichot
2
67 kgWynants
3
74 kgBellemakers
4
75 kgMarcato
5
67 kgFlecha
6
72 kgDuclos-Lassalle
7
63 kgGilbert
8
75 kgKrauß
9
81 kgWeening
10
68 kgCretskens
11
75 kgCancellara
12
80 kgEisel
13
74 kgEngoulvent
14
82 kgJérôme
15
65 kgde Jongh
16
76 kgScheirlinckx
17
78 kgVansummeren
18
79 kg
Weight (KG) →
Result →
82
63
1
18
# | Rider | Weight (KG) |
---|---|---|
1 | VERBIST Evert | 73 |
2 | BICHOT Freddy | 67 |
3 | WYNANTS Maarten | 74 |
4 | BELLEMAKERS Dirk | 75 |
5 | MARCATO Marco | 67 |
6 | FLECHA Juan Antonio | 72 |
7 | DUCLOS-LASSALLE Hervé | 63 |
8 | GILBERT Philippe | 75 |
9 | KRAUß Sven | 81 |
10 | WEENING Pieter | 68 |
11 | CRETSKENS Wilfried | 75 |
12 | CANCELLARA Fabian | 80 |
13 | EISEL Bernhard | 74 |
14 | ENGOULVENT Jimmy | 82 |
15 | JÉRÔME Vincent | 65 |
16 | DE JONGH Steven | 76 |
17 | SCHEIRLINCKX Staf | 78 |
18 | VANSUMMEREN Johan | 79 |