Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 10
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
De Vocht
1
78 kgDion
2
65 kgMondory
3
66 kgMatheou
4
73 kgKohler
5
69 kgVandenbergh
6
86 kgBrard
7
74 kgBoonen
8
82 kgRoelandts
9
78 kgJeandesboz
10
69 kgRuijgh
11
64 kgBakelants
12
67 kgVan Melsen
13
77 kgGérard
15
70 kgDe Gendt
16
73 kgVan Avermaet
17
74 kgDocker
18
73 kg
1
78 kgDion
2
65 kgMondory
3
66 kgMatheou
4
73 kgKohler
5
69 kgVandenbergh
6
86 kgBrard
7
74 kgBoonen
8
82 kgRoelandts
9
78 kgJeandesboz
10
69 kgRuijgh
11
64 kgBakelants
12
67 kgVan Melsen
13
77 kgGérard
15
70 kgDe Gendt
16
73 kgVan Avermaet
17
74 kgDocker
18
73 kg
Weight (KG) →
Result →
86
64
1
18
# | Rider | Weight (KG) |
---|---|---|
1 | DE VOCHT Wim | 78 |
2 | DION Renaud | 65 |
3 | MONDORY Lloyd | 66 |
4 | MATHEOU Romain | 73 |
5 | KOHLER Martin | 69 |
6 | VANDENBERGH Stijn | 86 |
7 | BRARD Florent | 74 |
8 | BOONEN Tom | 82 |
9 | ROELANDTS Jürgen | 78 |
10 | JEANDESBOZ Fabrice | 69 |
11 | RUIJGH Rob | 64 |
12 | BAKELANTS Jan | 67 |
13 | VAN MELSEN Kévin | 77 |
15 | GÉRARD Arnaud | 70 |
16 | DE GENDT Thomas | 73 |
17 | VAN AVERMAET Greg | 74 |
18 | DOCKER Mitchell | 73 |