Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 3
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
De Vreese
1
78 kgNiermann
2
64 kgDevillers
3
62 kgIgnatiev
4
67 kgSummerhill
5
70 kgLelay
6
67 kgMontaguti
7
65 kgVanendert
8
62 kgvan Zandbeek
9
72 kgViganò
10
67 kgFeillu
11
69 kgTimmer
12
77 kgRast
13
80 kgPineau
14
68 kgVan Keirsbulck
16
89 kgMartias
17
71 kgDevenyns
18
65 kgDowning
19
64 kg
1
78 kgNiermann
2
64 kgDevillers
3
62 kgIgnatiev
4
67 kgSummerhill
5
70 kgLelay
6
67 kgMontaguti
7
65 kgVanendert
8
62 kgvan Zandbeek
9
72 kgViganò
10
67 kgFeillu
11
69 kgTimmer
12
77 kgRast
13
80 kgPineau
14
68 kgVan Keirsbulck
16
89 kgMartias
17
71 kgDevenyns
18
65 kgDowning
19
64 kg
Weight (KG) →
Result →
89
62
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | DE VREESE Laurens | 78 |
2 | NIERMANN Grischa | 64 |
3 | DEVILLERS Gilles | 62 |
4 | IGNATIEV Mikhail | 67 |
5 | SUMMERHILL Daniel | 70 |
6 | LELAY David | 67 |
7 | MONTAGUTI Matteo | 65 |
8 | VANENDERT Jelle | 62 |
9 | VAN ZANDBEEK Ronan | 72 |
10 | VIGANÒ Davide | 67 |
11 | FEILLU Brice | 69 |
12 | TIMMER Albert | 77 |
13 | RAST Grégory | 80 |
14 | PINEAU Cédric | 68 |
16 | VAN KEIRSBULCK Guillaume | 89 |
17 | MARTIAS Rony | 71 |
18 | DEVENYNS Dries | 65 |
19 | DOWNING Russell | 64 |