Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 47
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Neirynck
1
78 kgBoucher
3
78 kgVan Hoecke
4
78 kgStamegna
5
73 kgCurvers
6
73 kgDe Vreese
8
78 kgThurau
9
73 kgDe Troyer
10
72 kgBurghardt
11
75 kgTsatevich
12
64 kgStannard
13
83 kgBagdonas
14
78 kgPaiani
15
77 kgKneisky
16
68 kgFlecha
17
72 kgJuul-Jensen
18
73 kgKreder
19
67 kgRuijgh
20
64 kgRoelandts
22
78 kgBarle
23
72 kg
1
78 kgBoucher
3
78 kgVan Hoecke
4
78 kgStamegna
5
73 kgCurvers
6
73 kgDe Vreese
8
78 kgThurau
9
73 kgDe Troyer
10
72 kgBurghardt
11
75 kgTsatevich
12
64 kgStannard
13
83 kgBagdonas
14
78 kgPaiani
15
77 kgKneisky
16
68 kgFlecha
17
72 kgJuul-Jensen
18
73 kgKreder
19
67 kgRuijgh
20
64 kgRoelandts
22
78 kgBarle
23
72 kg
Weight (KG) →
Result →
83
64
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | NEIRYNCK Stijn | 78 |
3 | BOUCHER David | 78 |
4 | VAN HOECKE Gijs | 78 |
5 | STAMEGNA Sebastian | 73 |
6 | CURVERS Roy | 73 |
8 | DE VREESE Laurens | 78 |
9 | THURAU Björn | 73 |
10 | DE TROYER Tim | 72 |
11 | BURGHARDT Marcus | 75 |
12 | TSATEVICH Alexey | 64 |
13 | STANNARD Ian | 83 |
14 | BAGDONAS Gediminas | 78 |
15 | PAIANI Jean-Lou | 77 |
16 | KNEISKY Morgan | 68 |
17 | FLECHA Juan Antonio | 72 |
18 | JUUL-JENSEN Christopher | 73 |
19 | KREDER Michel | 67 |
20 | RUIJGH Rob | 64 |
22 | ROELANDTS Jürgen | 78 |
23 | BARLE Florent | 72 |