Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 11
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Debusschere
1
77 kgMaes
2
78 kgVanbilsen
3
73 kgMørkøv
4
71 kgFarrar
5
73 kgDe Backer
6
73 kgCurvers
7
73 kgSinkeldam
8
77 kgBrown
9
76 kgGoddaert
10
72 kgDelage
11
70 kgVan Keirsbulck
12
89 kgVachon
13
65 kgWallays
14
77 kgDémare
15
76 kgNapolitano
16
81 kgSelig
17
80 kgLindeman
18
69 kgAberasturi
19
69 kg
1
77 kgMaes
2
78 kgVanbilsen
3
73 kgMørkøv
4
71 kgFarrar
5
73 kgDe Backer
6
73 kgCurvers
7
73 kgSinkeldam
8
77 kgBrown
9
76 kgGoddaert
10
72 kgDelage
11
70 kgVan Keirsbulck
12
89 kgVachon
13
65 kgWallays
14
77 kgDémare
15
76 kgNapolitano
16
81 kgSelig
17
80 kgLindeman
18
69 kgAberasturi
19
69 kg
Weight (KG) →
Result →
89
65
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | DEBUSSCHERE Jens | 77 |
2 | MAES Nikolas | 78 |
3 | VANBILSEN Kenneth | 73 |
4 | MØRKØV Michael | 71 |
5 | FARRAR Tyler | 73 |
6 | DE BACKER Bert | 73 |
7 | CURVERS Roy | 73 |
8 | SINKELDAM Ramon | 77 |
9 | BROWN Graeme Allen | 76 |
10 | GODDAERT Kristof | 72 |
11 | DELAGE Mickaël | 70 |
12 | VAN KEIRSBULCK Guillaume | 89 |
13 | VACHON Florian | 65 |
14 | WALLAYS Jelle | 77 |
15 | DÉMARE Arnaud | 76 |
16 | NAPOLITANO Danilo | 81 |
17 | SELIG Rüdiger | 80 |
18 | LINDEMAN Bert-Jan | 69 |
19 | ABERASTURI Jon | 69 |