Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 55
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Démare
1
76 kgPetit
2
80 kgKeukeleire
3
69 kgFarrar
4
73 kgvan Poppel
5
82 kgBreschel
6
70 kgvan Genechten
7
67 kgJans
8
68 kgDelage
9
70 kgEnger
10
69 kgGhyselinck
11
74 kgTheuns
12
72 kgDernies
13
68 kgPlanckaert
14
65 kgTrusov
15
77 kgBauer
16
74 kgJacobs
17
68 kgVanbilsen
18
73 kgLeukemans
19
67 kgSprengers
20
60 kgTulik
21
64 kgDe Troyer
22
72 kgKuznetsov
23
70 kg
1
76 kgPetit
2
80 kgKeukeleire
3
69 kgFarrar
4
73 kgvan Poppel
5
82 kgBreschel
6
70 kgvan Genechten
7
67 kgJans
8
68 kgDelage
9
70 kgEnger
10
69 kgGhyselinck
11
74 kgTheuns
12
72 kgDernies
13
68 kgPlanckaert
14
65 kgTrusov
15
77 kgBauer
16
74 kgJacobs
17
68 kgVanbilsen
18
73 kgLeukemans
19
67 kgSprengers
20
60 kgTulik
21
64 kgDe Troyer
22
72 kgKuznetsov
23
70 kg
Weight (KG) →
Result →
82
60
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | DÉMARE Arnaud | 76 |
2 | PETIT Adrien | 80 |
3 | KEUKELEIRE Jens | 69 |
4 | FARRAR Tyler | 73 |
5 | VAN POPPEL Danny | 82 |
6 | BRESCHEL Matti | 70 |
7 | VAN GENECHTEN Jonas | 67 |
8 | JANS Roy | 68 |
9 | DELAGE Mickaël | 70 |
10 | ENGER Sondre Holst | 69 |
11 | GHYSELINCK Jan | 74 |
12 | THEUNS Edward | 72 |
13 | DERNIES Tom | 68 |
14 | PLANCKAERT Baptiste | 65 |
15 | TRUSOV Nikolay | 77 |
16 | BAUER Jack | 74 |
17 | JACOBS Pieter | 68 |
18 | VANBILSEN Kenneth | 73 |
19 | LEUKEMANS Björn | 67 |
20 | SPRENGERS Thomas | 60 |
21 | TULIK Angélo | 64 |
22 | DE TROYER Tim | 72 |
23 | KUZNETSOV Viacheslav | 70 |