Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 19
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Stortoni
1
59 kgKvasina
3
72 kgZeits
4
73 kgDmitriyev
6
69 kgBrambilla
9
57 kgHollenstein
11
80 kgKireyev
12
66 kgBisolti
13
58 kgRogina
14
70 kgKoren
20
72 kgBelletti
21
72 kgMartin
26
59 kgDe Marchi
27
65 kgRenev
28
68 kgFrank
34
64 kgBodnar
36
77 kgRicci Bitti
40
60 kgTleubayev
52
70 kg
1
59 kgKvasina
3
72 kgZeits
4
73 kgDmitriyev
6
69 kgBrambilla
9
57 kgHollenstein
11
80 kgKireyev
12
66 kgBisolti
13
58 kgRogina
14
70 kgKoren
20
72 kgBelletti
21
72 kgMartin
26
59 kgDe Marchi
27
65 kgRenev
28
68 kgFrank
34
64 kgBodnar
36
77 kgRicci Bitti
40
60 kgTleubayev
52
70 kg
Weight (KG) →
Result →
80
57
1
52
# | Rider | Weight (KG) |
---|---|---|
1 | STORTONI Simone | 59 |
3 | KVASINA Matija | 72 |
4 | ZEITS Andrey | 73 |
6 | DMITRIYEV Valeriy | 69 |
9 | BRAMBILLA Gianluca | 57 |
11 | HOLLENSTEIN Reto | 80 |
12 | KIREYEV Roman | 66 |
13 | BISOLTI Alessandro | 58 |
14 | ROGINA Radoslav | 70 |
20 | KOREN Kristijan | 72 |
21 | BELLETTI Manuel | 72 |
26 | MARTIN Dan | 59 |
27 | DE MARCHI Alessandro | 65 |
28 | RENEV Sergey | 68 |
34 | FRANK Mathias | 64 |
36 | BODNAR Maciej | 77 |
40 | RICCI BITTI Davide | 60 |
52 | TLEUBAYEV Ruslan | 70 |