Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 61
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Reus
3
70 kgBrutt
7
70 kgRojas
10
70 kgPardilla
13
65 kgMoreno
14
63 kgMaté
16
68 kgSerov
18
77 kgTrusov
20
77 kgMizurov
21
68 kgVeelers
24
75 kgClement
30
66 kgDyachenko
31
65 kgSieberg
32
80 kgMarino
37
65 kgGlasner
41
72 kgKlimov
43
69 kgGutiérrez
44
60 kgPerget
45
64 kg
3
70 kgBrutt
7
70 kgRojas
10
70 kgPardilla
13
65 kgMoreno
14
63 kgMaté
16
68 kgSerov
18
77 kgTrusov
20
77 kgMizurov
21
68 kgVeelers
24
75 kgClement
30
66 kgDyachenko
31
65 kgSieberg
32
80 kgMarino
37
65 kgGlasner
41
72 kgKlimov
43
69 kgGutiérrez
44
60 kgPerget
45
64 kg
Weight (KG) →
Result →
80
60
3
45
# | Rider | Weight (KG) |
---|---|---|
3 | REUS Kai | 70 |
7 | BRUTT Pavel | 70 |
10 | ROJAS José Joaquín | 70 |
13 | PARDILLA Sergio | 65 |
14 | MORENO Javier | 63 |
16 | MATÉ Luis Ángel | 68 |
18 | SEROV Alexander | 77 |
20 | TRUSOV Nikolay | 77 |
21 | MIZUROV Andrey | 68 |
24 | VEELERS Tom | 75 |
30 | CLEMENT Stef | 66 |
31 | DYACHENKO Alexandr | 65 |
32 | SIEBERG Marcel | 80 |
37 | MARINO Jean-Marc | 65 |
41 | GLASNER Björn | 72 |
43 | KLIMOV Sergey | 69 |
44 | GUTIÉRREZ David | 60 |
45 | PERGET Mathieu | 64 |