Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 18
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Goasmat
1
60 kgvan Schendel
2
72 kgOckers
5
61 kgCosson
6
64 kgGoutorbe
14
69 kgMithouard
17
74 kgFaure
18
58 kgDisseaux
19
67 kgCogan
20
68 kgMallet
21
53 kgLouviot
22
62 kgVlaemynck
24
63 kgGalateau
29
76 kgGrimbert
30
68 kgLowie
32
68 kgThiétard
35
68 kgVietto
36
67 kgBouffier
37
73 kg
1
60 kgvan Schendel
2
72 kgOckers
5
61 kgCosson
6
64 kgGoutorbe
14
69 kgMithouard
17
74 kgFaure
18
58 kgDisseaux
19
67 kgCogan
20
68 kgMallet
21
53 kgLouviot
22
62 kgVlaemynck
24
63 kgGalateau
29
76 kgGrimbert
30
68 kgLowie
32
68 kgThiétard
35
68 kgVietto
36
67 kgBouffier
37
73 kg
Weight (KG) →
Result →
76
53
1
37
# | Rider | Weight (KG) |
---|---|---|
1 | GOASMAT Jean-Marie | 60 |
2 | VAN SCHENDEL Albert | 72 |
5 | OCKERS Stan | 61 |
6 | COSSON Victor | 64 |
14 | GOUTORBE Joseph | 69 |
17 | MITHOUARD Fernand | 74 |
18 | FAURE Benoît | 58 |
19 | DISSEAUX Albertin | 67 |
20 | COGAN Pierre | 68 |
21 | MALLET Auguste | 53 |
22 | LOUVIOT Raymond | 62 |
24 | VLAEMYNCK Lucien | 63 |
29 | GALATEAU Fabien | 76 |
30 | GRIMBERT Gaston | 68 |
32 | LOWIE Jules | 68 |
35 | THIÉTARD Louis | 68 |
36 | VIETTO René | 67 |
37 | BOUFFIER Gabriel | 73 |