Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 6
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Reihs
2
75 kgJørgensen
3
60 kgHunt
4
76 kgBak
6
76 kgRadochla
9
70 kgBreschel
11
70 kgvan Hummel
12
64 kgHegreberg
15
72 kgGreipel
16
80 kgAdamsson
19
68 kgBoucher
21
78 kgMusiol
25
70 kgMaaskant
27
76 kgFlens
31
82 kgMørkøv
33
71 kgRasch
36
72 kgKlostergaard
39
69 kgRooijakkers
41
68 kgChadwick
43
75 kgBlaudzun
45
66 kgOmloop
50
78 kgMortensen
51
70 kgJohansen
54
78 kg
2
75 kgJørgensen
3
60 kgHunt
4
76 kgBak
6
76 kgRadochla
9
70 kgBreschel
11
70 kgvan Hummel
12
64 kgHegreberg
15
72 kgGreipel
16
80 kgAdamsson
19
68 kgBoucher
21
78 kgMusiol
25
70 kgMaaskant
27
76 kgFlens
31
82 kgMørkøv
33
71 kgRasch
36
72 kgKlostergaard
39
69 kgRooijakkers
41
68 kgChadwick
43
75 kgBlaudzun
45
66 kgOmloop
50
78 kgMortensen
51
70 kgJohansen
54
78 kg
Weight (KG) →
Result →
82
60
2
54
# | Rider | Weight (KG) |
---|---|---|
2 | REIHS Michael | 75 |
3 | JØRGENSEN René | 60 |
4 | HUNT Jeremy | 76 |
6 | BAK Lars Ytting | 76 |
9 | RADOCHLA Steffen | 70 |
11 | BRESCHEL Matti | 70 |
12 | VAN HUMMEL Kenny | 64 |
15 | HEGREBERG Morten | 72 |
16 | GREIPEL André | 80 |
19 | ADAMSSON Stefan | 68 |
21 | BOUCHER David | 78 |
25 | MUSIOL Daniel | 70 |
27 | MAASKANT Martijn | 76 |
31 | FLENS Rick | 82 |
33 | MØRKØV Michael | 71 |
36 | RASCH Gabriel | 72 |
39 | KLOSTERGAARD Kasper | 69 |
41 | ROOIJAKKERS Piet | 68 |
43 | CHADWICK Glen Alan | 75 |
45 | BLAUDZUN Michael | 66 |
50 | OMLOOP Geert | 78 |
51 | MORTENSEN Martin | 70 |
54 | JOHANSEN Allan | 78 |