Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.7 * weight + 157
This means that on average for every extra kilogram weight a rider loses -1.7 positions in the result.
Haedo
1
73 kgRasmussen
2
88 kgArvesen
5
74 kgKristoff
6
78 kgAaen Jørgensen
8
63 kgBoasson Hagen
9
75 kgReihs
11
75 kgRasch
23
72 kgBreschel
25
70 kgHegreberg
26
72 kgWilmann
32
69 kgJørgensen
39
60 kgBak
48
76 kgCancellara
49
80 kgNissen
54
65 kgNordhaug
56
63 kgGottfried
57
60 kgWyss
59
65 kgVoß
60
66 kgFriedemann
61
75 kgWilches
71
56 kgChristensen
72
69 kg
1
73 kgRasmussen
2
88 kgArvesen
5
74 kgKristoff
6
78 kgAaen Jørgensen
8
63 kgBoasson Hagen
9
75 kgReihs
11
75 kgRasch
23
72 kgBreschel
25
70 kgHegreberg
26
72 kgWilmann
32
69 kgJørgensen
39
60 kgBak
48
76 kgCancellara
49
80 kgNissen
54
65 kgNordhaug
56
63 kgGottfried
57
60 kgWyss
59
65 kgVoß
60
66 kgFriedemann
61
75 kgWilches
71
56 kgChristensen
72
69 kg
Weight (KG) →
Result →
88
56
1
72
# | Rider | Weight (KG) |
---|---|---|
1 | HAEDO Juan José | 73 |
2 | RASMUSSEN Alex | 88 |
5 | ARVESEN Kurt-Asle | 74 |
6 | KRISTOFF Alexander | 78 |
8 | AAEN JØRGENSEN Jonas | 63 |
9 | BOASSON HAGEN Edvald | 75 |
11 | REIHS Michael | 75 |
23 | RASCH Gabriel | 72 |
25 | BRESCHEL Matti | 70 |
26 | HEGREBERG Morten | 72 |
32 | WILMANN Frederik | 69 |
39 | JØRGENSEN René | 60 |
48 | BAK Lars Ytting | 76 |
49 | CANCELLARA Fabian | 80 |
54 | NISSEN Søren | 65 |
56 | NORDHAUG Lars Petter | 63 |
57 | GOTTFRIED Alexander | 60 |
59 | WYSS Danilo | 65 |
60 | VOß Paul | 66 |
61 | FRIEDEMANN Matthias | 75 |
71 | WILCHES Juan Pablo | 56 |
72 | CHRISTENSEN Mads | 69 |