Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 40
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Baker
1
66 kgRoy
3
66 kgLooser
4
57 kgColes-Lyster
5
61 kgCampbell
6
63 kgChristoforou
9
53 kgWood
10
59 kgWilliams
13
60 kgJackson
14
63 kgRoberts
18
60 kgKirchmann
20
59 kgManly
23
53 kgHenderson
24
58 kgHalbwachs
25
62 kgStorrie
26
58 kgDixon
27
61 kgLowden
28
55 kgHarris
31
57 kgLeech
36
72 kgBarker
41
56 kg
1
66 kgRoy
3
66 kgLooser
4
57 kgColes-Lyster
5
61 kgCampbell
6
63 kgChristoforou
9
53 kgWood
10
59 kgWilliams
13
60 kgJackson
14
63 kgRoberts
18
60 kgKirchmann
20
59 kgManly
23
53 kgHenderson
24
58 kgHalbwachs
25
62 kgStorrie
26
58 kgDixon
27
61 kgLowden
28
55 kgHarris
31
57 kgLeech
36
72 kgBarker
41
56 kg
Weight (KG) →
Result →
72
53
1
41
# | Rider | Weight (KG) |
---|---|---|
1 | BAKER Georgia | 66 |
3 | ROY Sarah | 66 |
4 | LOOSER Vera | 57 |
5 | COLES-LYSTER Maggie | 61 |
6 | CAMPBELL Teniel | 63 |
9 | CHRISTOFOROU Antri | 53 |
10 | WOOD Alice | 59 |
13 | WILLIAMS Georgia | 60 |
14 | JACKSON Alison | 63 |
18 | ROBERTS Jessica | 60 |
20 | KIRCHMANN Leah | 59 |
23 | MANLY Alexandra | 53 |
24 | HENDERSON Anna | 58 |
25 | HALBWACHS Aurelie | 62 |
26 | STORRIE Becky | 58 |
27 | DIXON Leah | 61 |
28 | LOWDEN Joscelin | 55 |
31 | HARRIS Ella | 57 |
36 | LEECH Madelaine | 72 |
41 | BARKER Elinor | 56 |