Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 48
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Cummings
1
73 kgCelli
2
69 kgBallan
4
73 kgLöfkvist
5
70 kgFischer
6
65 kgCannone
7
75 kgGarzelli
8
62 kgDi Luca
9
61 kgSacchi
10
68 kgGavazzi
11
65 kgTiralongo
13
63 kgWeissinger
14
74 kgBarry
15
72 kgCommesso
17
66 kgMasciarelli
18
63 kgNoè
19
65 kgPietropolli
20
61 kg
1
73 kgCelli
2
69 kgBallan
4
73 kgLöfkvist
5
70 kgFischer
6
65 kgCannone
7
75 kgGarzelli
8
62 kgDi Luca
9
61 kgSacchi
10
68 kgGavazzi
11
65 kgTiralongo
13
63 kgWeissinger
14
74 kgBarry
15
72 kgCommesso
17
66 kgMasciarelli
18
63 kgNoè
19
65 kgPietropolli
20
61 kg
Weight (KG) →
Result →
75
61
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | CUMMINGS Steve | 73 |
2 | CELLI Luca | 69 |
4 | BALLAN Alessandro | 73 |
5 | LÖFKVIST Thomas | 70 |
6 | FISCHER Murilo Antonio | 65 |
7 | CANNONE Donato | 75 |
8 | GARZELLI Stefano | 62 |
9 | DI LUCA Danilo | 61 |
10 | SACCHI Fabio | 68 |
11 | GAVAZZI Francesco | 65 |
13 | TIRALONGO Paolo | 63 |
14 | WEISSINGER René | 74 |
15 | BARRY Michael | 72 |
17 | COMMESSO Salvatore | 66 |
18 | MASCIARELLI Simone | 63 |
19 | NOÈ Andrea | 65 |
20 | PIETROPOLLI Daniele | 61 |