Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 22
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Zimmermann
1
70 kgZana
3
65 kgQuartucci
10
64 kgJames
11
60 kgMazzucco
12
69 kgBrown
15
74 kgSowiński
16
63 kgRubio
17
56 kgLucca
20
74 kgPellizzer
21
62 kgRikunov
24
71 kgBarison
25
59 kgPopov
29
75 kgBayer
31
71 kgBonnefoix
35
60 kgJohnston
38
55 kgGinestra
40
64 kgFerri
46
69 kgFriedrich
50
71 kg
1
70 kgZana
3
65 kgQuartucci
10
64 kgJames
11
60 kgMazzucco
12
69 kgBrown
15
74 kgSowiński
16
63 kgRubio
17
56 kgLucca
20
74 kgPellizzer
21
62 kgRikunov
24
71 kgBarison
25
59 kgPopov
29
75 kgBayer
31
71 kgBonnefoix
35
60 kgJohnston
38
55 kgGinestra
40
64 kgFerri
46
69 kgFriedrich
50
71 kg
Weight (KG) →
Result →
75
55
1
50
# | Rider | Weight (KG) |
---|---|---|
1 | ZIMMERMANN Georg | 70 |
3 | ZANA Filippo | 65 |
10 | QUARTUCCI Lorenzo | 64 |
11 | JAMES Tim | 60 |
12 | MAZZUCCO Fabio | 69 |
15 | BROWN Connor | 74 |
16 | SOWIŃSKI Artur | 63 |
17 | RUBIO Einer | 56 |
20 | LUCCA Riccardo | 74 |
21 | PELLIZZER Mattia | 62 |
24 | RIKUNOV Petr | 71 |
25 | BARISON Emanuele | 59 |
29 | POPOV Anton | 75 |
31 | BAYER Tobias | 71 |
35 | BONNEFOIX Edouard | 60 |
38 | JOHNSTON Calum | 55 |
40 | GINESTRA Lorenzo | 64 |
46 | FERRI Edoardo | 69 |
50 | FRIEDRICH Marco | 71 |