Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 21
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Kvist
1
68 kgCosta
2
69 kgBalloni
3
72 kgThomson
7
75 kgVenter
9
70 kgAnderson
11
66 kgContreras
17
64 kgDe Marchi
19
65 kgChaabane
20
70 kgPaiani
21
77 kgBusato
25
67 kgŠiškevičius
27
80 kgCasimiro
29
62 kgVilela
30
59 kgLindeman
31
69 kgVeilleux
33
75 kgDrucker
43
75 kgArchbold
48
79 kgPantano
55
61 kg
1
68 kgCosta
2
69 kgBalloni
3
72 kgThomson
7
75 kgVenter
9
70 kgAnderson
11
66 kgContreras
17
64 kgDe Marchi
19
65 kgChaabane
20
70 kgPaiani
21
77 kgBusato
25
67 kgŠiškevičius
27
80 kgCasimiro
29
62 kgVilela
30
59 kgLindeman
31
69 kgVeilleux
33
75 kgDrucker
43
75 kgArchbold
48
79 kgPantano
55
61 kg
Weight (KG) →
Result →
80
59
1
55
# | Rider | Weight (KG) |
---|---|---|
1 | KVIST Thomas Vedel | 68 |
2 | COSTA Rui | 69 |
3 | BALLONI Alfredo | 72 |
7 | THOMSON Jay Robert | 75 |
9 | VENTER Jaco | 70 |
11 | ANDERSON Ryan | 66 |
17 | CONTRERAS Mario Wilfredo | 64 |
19 | DE MARCHI Alessandro | 65 |
20 | CHAABANE Hichem | 70 |
21 | PAIANI Jean-Lou | 77 |
25 | BUSATO Matteo | 67 |
27 | ŠIŠKEVIČIUS Evaldas | 80 |
29 | CASIMIRO Henrique | 62 |
30 | VILELA Ricardo | 59 |
31 | LINDEMAN Bert-Jan | 69 |
33 | VEILLEUX David | 75 |
43 | DRUCKER Jempy | 75 |
48 | ARCHBOLD Shane | 79 |
55 | PANTANO Jarlinson | 61 |