Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1 * weight + 101
This means that on average for every extra kilogram weight a rider loses -1 positions in the result.
Busato
2
67 kgDrucker
5
75 kgŠiškevičius
10
80 kgArchbold
11
79 kgAnderson
13
66 kgLindeman
14
69 kgVeilleux
16
75 kgThomson
21
75 kgCosta
23
69 kgChaabane
28
70 kgBalloni
30
72 kgDe Marchi
35
65 kgKvist
40
68 kgPaiani
44
77 kgCasimiro
45
62 kgPantano
46
61 kgVilela
48
59 kgGastauer
50
73 kgContreras
60
64 kgRomero
61
55 kgVenter
68
70 kgChaigneau
74
80 kg
2
67 kgDrucker
5
75 kgŠiškevičius
10
80 kgArchbold
11
79 kgAnderson
13
66 kgLindeman
14
69 kgVeilleux
16
75 kgThomson
21
75 kgCosta
23
69 kgChaabane
28
70 kgBalloni
30
72 kgDe Marchi
35
65 kgKvist
40
68 kgPaiani
44
77 kgCasimiro
45
62 kgPantano
46
61 kgVilela
48
59 kgGastauer
50
73 kgContreras
60
64 kgRomero
61
55 kgVenter
68
70 kgChaigneau
74
80 kg
Weight (KG) →
Result →
80
55
2
74
# | Rider | Weight (KG) |
---|---|---|
2 | BUSATO Matteo | 67 |
5 | DRUCKER Jempy | 75 |
10 | ŠIŠKEVIČIUS Evaldas | 80 |
11 | ARCHBOLD Shane | 79 |
13 | ANDERSON Ryan | 66 |
14 | LINDEMAN Bert-Jan | 69 |
16 | VEILLEUX David | 75 |
21 | THOMSON Jay Robert | 75 |
23 | COSTA Rui | 69 |
28 | CHAABANE Hichem | 70 |
30 | BALLONI Alfredo | 72 |
35 | DE MARCHI Alessandro | 65 |
40 | KVIST Thomas Vedel | 68 |
44 | PAIANI Jean-Lou | 77 |
45 | CASIMIRO Henrique | 62 |
46 | PANTANO Jarlinson | 61 |
48 | VILELA Ricardo | 59 |
50 | GASTAUER Ben | 73 |
60 | CONTRERAS Mario Wilfredo | 64 |
61 | ROMERO Jeffry | 55 |
68 | VENTER Jaco | 70 |
74 | CHAIGNEAU Robin | 80 |