Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight + 7
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Balloni
1
72 kgCosta
2
69 kgDrucker
12
75 kgContreras
15
64 kgCasimiro
19
62 kgLindeman
20
69 kgAnderson
22
66 kgVenter
23
70 kgŠiškevičius
24
80 kgThomson
25
75 kgRomero
31
55 kgPantano
32
61 kgChaabane
37
70 kgVilela
38
59 kgDe Marchi
39
65 kgKvist
40
68 kgVeilleux
45
75 kgBusato
51
67 kgPaiani
58
77 kgArchbold
59
79 kg
1
72 kgCosta
2
69 kgDrucker
12
75 kgContreras
15
64 kgCasimiro
19
62 kgLindeman
20
69 kgAnderson
22
66 kgVenter
23
70 kgŠiškevičius
24
80 kgThomson
25
75 kgRomero
31
55 kgPantano
32
61 kgChaabane
37
70 kgVilela
38
59 kgDe Marchi
39
65 kgKvist
40
68 kgVeilleux
45
75 kgBusato
51
67 kgPaiani
58
77 kgArchbold
59
79 kg
Weight (KG) →
Result →
80
55
1
59
# | Rider | Weight (KG) |
---|---|---|
1 | BALLONI Alfredo | 72 |
2 | COSTA Rui | 69 |
12 | DRUCKER Jempy | 75 |
15 | CONTRERAS Mario Wilfredo | 64 |
19 | CASIMIRO Henrique | 62 |
20 | LINDEMAN Bert-Jan | 69 |
22 | ANDERSON Ryan | 66 |
23 | VENTER Jaco | 70 |
24 | ŠIŠKEVIČIUS Evaldas | 80 |
25 | THOMSON Jay Robert | 75 |
31 | ROMERO Jeffry | 55 |
32 | PANTANO Jarlinson | 61 |
37 | CHAABANE Hichem | 70 |
38 | VILELA Ricardo | 59 |
39 | DE MARCHI Alessandro | 65 |
40 | KVIST Thomas Vedel | 68 |
45 | VEILLEUX David | 75 |
51 | BUSATO Matteo | 67 |
58 | PAIANI Jean-Lou | 77 |
59 | ARCHBOLD Shane | 79 |