Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 40
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Costa
1
69 kgVenter
4
70 kgBalloni
6
72 kgAnderson
7
66 kgThomson
9
75 kgVeilleux
12
75 kgŠiškevičius
13
80 kgKvist
17
68 kgContreras
18
64 kgVilela
19
59 kgBusato
22
67 kgCasimiro
27
62 kgChaabane
30
70 kgDe Marchi
32
65 kgDrucker
34
75 kgLindeman
44
69 kgPaiani
45
77 kgPantano
48
61 kgRomero
52
55 kgArchbold
67
79 kg
1
69 kgVenter
4
70 kgBalloni
6
72 kgAnderson
7
66 kgThomson
9
75 kgVeilleux
12
75 kgŠiškevičius
13
80 kgKvist
17
68 kgContreras
18
64 kgVilela
19
59 kgBusato
22
67 kgCasimiro
27
62 kgChaabane
30
70 kgDe Marchi
32
65 kgDrucker
34
75 kgLindeman
44
69 kgPaiani
45
77 kgPantano
48
61 kgRomero
52
55 kgArchbold
67
79 kg
Weight (KG) →
Result →
80
55
1
67
# | Rider | Weight (KG) |
---|---|---|
1 | COSTA Rui | 69 |
4 | VENTER Jaco | 70 |
6 | BALLONI Alfredo | 72 |
7 | ANDERSON Ryan | 66 |
9 | THOMSON Jay Robert | 75 |
12 | VEILLEUX David | 75 |
13 | ŠIŠKEVIČIUS Evaldas | 80 |
17 | KVIST Thomas Vedel | 68 |
18 | CONTRERAS Mario Wilfredo | 64 |
19 | VILELA Ricardo | 59 |
22 | BUSATO Matteo | 67 |
27 | CASIMIRO Henrique | 62 |
30 | CHAABANE Hichem | 70 |
32 | DE MARCHI Alessandro | 65 |
34 | DRUCKER Jempy | 75 |
44 | LINDEMAN Bert-Jan | 69 |
45 | PAIANI Jean-Lou | 77 |
48 | PANTANO Jarlinson | 61 |
52 | ROMERO Jeffry | 55 |
67 | ARCHBOLD Shane | 79 |