Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 84
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Kvist
1
68 kgArchbold
4
79 kgBalloni
5
72 kgCosta
6
69 kgContreras
7
64 kgDrucker
12
75 kgVenter
16
70 kgAnderson
17
66 kgThomson
20
75 kgPaiani
23
77 kgChaabane
25
70 kgDe Marchi
27
65 kgBusato
31
67 kgCasimiro
45
62 kgŠiškevičius
49
80 kgLindeman
51
69 kgVeilleux
52
75 kgVilela
53
59 kgPantano
57
61 kg
1
68 kgArchbold
4
79 kgBalloni
5
72 kgCosta
6
69 kgContreras
7
64 kgDrucker
12
75 kgVenter
16
70 kgAnderson
17
66 kgThomson
20
75 kgPaiani
23
77 kgChaabane
25
70 kgDe Marchi
27
65 kgBusato
31
67 kgCasimiro
45
62 kgŠiškevičius
49
80 kgLindeman
51
69 kgVeilleux
52
75 kgVilela
53
59 kgPantano
57
61 kg
Weight (KG) →
Result →
80
59
1
57
# | Rider | Weight (KG) |
---|---|---|
1 | KVIST Thomas Vedel | 68 |
4 | ARCHBOLD Shane | 79 |
5 | BALLONI Alfredo | 72 |
6 | COSTA Rui | 69 |
7 | CONTRERAS Mario Wilfredo | 64 |
12 | DRUCKER Jempy | 75 |
16 | VENTER Jaco | 70 |
17 | ANDERSON Ryan | 66 |
20 | THOMSON Jay Robert | 75 |
23 | PAIANI Jean-Lou | 77 |
25 | CHAABANE Hichem | 70 |
27 | DE MARCHI Alessandro | 65 |
31 | BUSATO Matteo | 67 |
45 | CASIMIRO Henrique | 62 |
49 | ŠIŠKEVIČIUS Evaldas | 80 |
51 | LINDEMAN Bert-Jan | 69 |
52 | VEILLEUX David | 75 |
53 | VILELA Ricardo | 59 |
57 | PANTANO Jarlinson | 61 |