Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 88
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Roth
1
70 kgPerry
2
71 kgRäim
3
69 kgVaubourzeix
4
70 kgCataford
5
70 kgDal-Cin
6
77 kgTurek
8
72 kgCraven
11
75 kgRathe
22
74 kgNuño
24
58 kgPiccoli
28
65 kgBeyer
31
63 kgDe Mesmaeker
32
68 kgVerschoor
34
74.5 kgJenkins
37
63 kgLemus
42
61 kgWhite
44
70 kgGervais
50
72 kgGee
52
72 kg
1
70 kgPerry
2
71 kgRäim
3
69 kgVaubourzeix
4
70 kgCataford
5
70 kgDal-Cin
6
77 kgTurek
8
72 kgCraven
11
75 kgRathe
22
74 kgNuño
24
58 kgPiccoli
28
65 kgBeyer
31
63 kgDe Mesmaeker
32
68 kgVerschoor
34
74.5 kgJenkins
37
63 kgLemus
42
61 kgWhite
44
70 kgGervais
50
72 kgGee
52
72 kg
Weight (KG) →
Result →
77
58
1
52
# | Rider | Weight (KG) |
---|---|---|
1 | ROTH Ryan | 70 |
2 | PERRY Benjamin | 71 |
3 | RÄIM Mihkel | 69 |
4 | VAUBOURZEIX Thomas | 70 |
5 | CATAFORD Alexander | 70 |
6 | DAL-CIN Matteo | 77 |
8 | TUREK Daniel | 72 |
11 | CRAVEN Dan | 75 |
22 | RATHE Jacob | 74 |
24 | NUÑO Israel | 58 |
28 | PICCOLI James | 65 |
31 | BEYER Chad | 63 |
32 | DE MESMAEKER Kevin | 68 |
34 | VERSCHOOR Martijn | 74.5 |
37 | JENKINS Max | 63 |
42 | LEMUS Luis | 61 |
44 | WHITE Curtis | 70 |
50 | GERVAIS Laurent | 72 |
52 | GEE Derek | 72 |