Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 71
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Roth
2
70 kgRathe
5
74 kgVaubourzeix
6
70 kgRäim
7
69 kgPerry
8
71 kgDal-Cin
15
77 kgNuño
18
58 kgCataford
20
70 kgTurek
25
72 kgJenkins
36
63 kgLemus
37
61 kgWhite
39
70 kgCraven
40
75 kgDe Mesmaeker
42
68 kgVerschoor
43
74.5 kgGee
45
72 kgBeyer
51
63 kgPiccoli
52
65 kgGervais
56
72 kg
2
70 kgRathe
5
74 kgVaubourzeix
6
70 kgRäim
7
69 kgPerry
8
71 kgDal-Cin
15
77 kgNuño
18
58 kgCataford
20
70 kgTurek
25
72 kgJenkins
36
63 kgLemus
37
61 kgWhite
39
70 kgCraven
40
75 kgDe Mesmaeker
42
68 kgVerschoor
43
74.5 kgGee
45
72 kgBeyer
51
63 kgPiccoli
52
65 kgGervais
56
72 kg
Weight (KG) →
Result →
77
58
2
56
# | Rider | Weight (KG) |
---|---|---|
2 | ROTH Ryan | 70 |
5 | RATHE Jacob | 74 |
6 | VAUBOURZEIX Thomas | 70 |
7 | RÄIM Mihkel | 69 |
8 | PERRY Benjamin | 71 |
15 | DAL-CIN Matteo | 77 |
18 | NUÑO Israel | 58 |
20 | CATAFORD Alexander | 70 |
25 | TUREK Daniel | 72 |
36 | JENKINS Max | 63 |
37 | LEMUS Luis | 61 |
39 | WHITE Curtis | 70 |
40 | CRAVEN Dan | 75 |
42 | DE MESMAEKER Kevin | 68 |
43 | VERSCHOOR Martijn | 74.5 |
45 | GEE Derek | 72 |
51 | BEYER Chad | 63 |
52 | PICCOLI James | 65 |
56 | GERVAIS Laurent | 72 |