Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 74
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Boivin
2
78 kgCastillo
3
72 kgMancebo
4
64 kgBurke
6
67 kgMilán
7
67 kgBeyer
8
63 kgȚvetcov
10
69 kgPiccoli
12
65 kgPerry
13
71 kgRoth
17
70 kgMegías
22
63 kgHecht
25
72 kgStites
28
60 kgSwirbul
29
65 kgBennett
31
66 kgClancy
36
63 kgCôté
38
74 kgTorres
41
70 kgConly
53
63 kg
2
78 kgCastillo
3
72 kgMancebo
4
64 kgBurke
6
67 kgMilán
7
67 kgBeyer
8
63 kgȚvetcov
10
69 kgPiccoli
12
65 kgPerry
13
71 kgRoth
17
70 kgMegías
22
63 kgHecht
25
72 kgStites
28
60 kgSwirbul
29
65 kgBennett
31
66 kgClancy
36
63 kgCôté
38
74 kgTorres
41
70 kgConly
53
63 kg
Weight (KG) →
Result →
78
60
2
53
# | Rider | Weight (KG) |
---|---|---|
2 | BOIVIN Guillaume | 78 |
3 | CASTILLO Ulises Alfredo | 72 |
4 | MANCEBO Francisco | 64 |
6 | BURKE Jack | 67 |
7 | MILÁN Diego | 67 |
8 | BEYER Chad | 63 |
10 | ȚVETCOV Serghei | 69 |
12 | PICCOLI James | 65 |
13 | PERRY Benjamin | 71 |
17 | ROTH Ryan | 70 |
22 | MEGÍAS Javier | 63 |
25 | HECHT Gage | 72 |
28 | STITES Tyler | 60 |
29 | SWIRBUL Keegan | 65 |
31 | BENNETT Sean | 66 |
36 | CLANCY Stephen | 63 |
38 | CÔTÉ Pier-André | 74 |
41 | TORRES Albert | 70 |
53 | CONLY Lukas | 63 |