Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 43
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Piccoli
4
65 kgSwirbul
6
65 kgȚvetcov
8
69 kgCastillo
9
72 kgBoivin
10
78 kgStites
11
60 kgMancebo
13
64 kgMilán
14
67 kgCôté
15
74 kgRoth
16
70 kgBurke
19
67 kgBeyer
20
63 kgMegías
21
63 kgPerry
22
71 kgBennett
26
66 kgTorres
34
70 kgClancy
36
63 kgHecht
44
72 kgConly
54
63 kg
4
65 kgSwirbul
6
65 kgȚvetcov
8
69 kgCastillo
9
72 kgBoivin
10
78 kgStites
11
60 kgMancebo
13
64 kgMilán
14
67 kgCôté
15
74 kgRoth
16
70 kgBurke
19
67 kgBeyer
20
63 kgMegías
21
63 kgPerry
22
71 kgBennett
26
66 kgTorres
34
70 kgClancy
36
63 kgHecht
44
72 kgConly
54
63 kg
Weight (KG) →
Result →
78
60
4
54
# | Rider | Weight (KG) |
---|---|---|
4 | PICCOLI James | 65 |
6 | SWIRBUL Keegan | 65 |
8 | ȚVETCOV Serghei | 69 |
9 | CASTILLO Ulises Alfredo | 72 |
10 | BOIVIN Guillaume | 78 |
11 | STITES Tyler | 60 |
13 | MANCEBO Francisco | 64 |
14 | MILÁN Diego | 67 |
15 | CÔTÉ Pier-André | 74 |
16 | ROTH Ryan | 70 |
19 | BURKE Jack | 67 |
20 | BEYER Chad | 63 |
21 | MEGÍAS Javier | 63 |
22 | PERRY Benjamin | 71 |
26 | BENNETT Sean | 66 |
34 | TORRES Albert | 70 |
36 | CLANCY Stephen | 63 |
44 | HECHT Gage | 72 |
54 | CONLY Lukas | 63 |