Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 34
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Côté
1
74 kgZimmer
2
68 kgGervais
4
72 kgHaidet
9
59 kgLeplingard
13
68 kgMilán
15
67 kgHoehn
18
63 kgConly
22
63 kgBeadle
23
64 kgde Keijzer
24
72.6 kgSchizzi
28
62 kgRoth
29
70 kgVollmer
30
67 kgRoberge
33
72 kgSwirbul
35
65 kgAlbrecht
36
62 kgMoazemi
37
70 kgÁlvarez
38
60 kgJuneau
42
67 kgJamieson
47
75 kgGee
48
72 kgHecht
61
72 kgPalamarek
68
61 kg
1
74 kgZimmer
2
68 kgGervais
4
72 kgHaidet
9
59 kgLeplingard
13
68 kgMilán
15
67 kgHoehn
18
63 kgConly
22
63 kgBeadle
23
64 kgde Keijzer
24
72.6 kgSchizzi
28
62 kgRoth
29
70 kgVollmer
30
67 kgRoberge
33
72 kgSwirbul
35
65 kgAlbrecht
36
62 kgMoazemi
37
70 kgÁlvarez
38
60 kgJuneau
42
67 kgJamieson
47
75 kgGee
48
72 kgHecht
61
72 kgPalamarek
68
61 kg
Weight (KG) →
Result →
75
59
1
68
# | Rider | Weight (KG) |
---|---|---|
1 | CÔTÉ Pier-André | 74 |
2 | ZIMMER Matt | 68 |
4 | GERVAIS Laurent | 72 |
9 | HAIDET Lance | 59 |
13 | LEPLINGARD Antoine | 68 |
15 | MILÁN Diego | 67 |
18 | HOEHN Alex | 63 |
22 | CONLY Lukas | 63 |
23 | BEADLE Hamish | 64 |
24 | DE KEIJZER Gerd | 72.6 |
28 | SCHIZZI Vitor Zucco | 62 |
29 | ROTH Ryan | 70 |
30 | VOLLMER Andrew | 67 |
33 | ROBERGE Adam | 72 |
35 | SWIRBUL Keegan | 65 |
36 | ALBRECHT Jasper | 62 |
37 | MOAZEMI Arvin | 70 |
38 | ÁLVAREZ Miguel Luis | 60 |
42 | JUNEAU Francis | 67 |
47 | JAMIESON Adam | 75 |
48 | GEE Derek | 72 |
61 | HECHT Gage | 72 |
68 | PALAMAREK Ethan | 61 |