Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 53
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Pawlak
1
81 kgStosz
2
70 kgFrątczak
3
70 kgFortin
4
78 kgden Braber
5
73 kgNolde
9
79 kgBanaszek
10
75 kgvan der Meer
11
82 kgGrixa
12
62 kgSteininger
13
64 kgPomorski
14
76 kgKuś
15
70 kgMason
16
60 kgKiskonen
18
64 kgvan der Tuuk
20
64 kgvan den Eijnden
23
63 kgColeman
24
70 kgVisser
25
75 kgCzabok
27
65 kg
1
81 kgStosz
2
70 kgFrątczak
3
70 kgFortin
4
78 kgden Braber
5
73 kgNolde
9
79 kgBanaszek
10
75 kgvan der Meer
11
82 kgGrixa
12
62 kgSteininger
13
64 kgPomorski
14
76 kgKuś
15
70 kgMason
16
60 kgKiskonen
18
64 kgvan der Tuuk
20
64 kgvan den Eijnden
23
63 kgColeman
24
70 kgVisser
25
75 kgCzabok
27
65 kg
Weight (KG) →
Result →
82
60
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | PAWLAK Tobiasz | 81 |
2 | STOSZ Patryk | 70 |
3 | FRĄTCZAK Radosław | 70 |
4 | FORTIN Filippo | 78 |
5 | DEN BRABER Tim | 73 |
9 | NOLDE Tobias | 79 |
10 | BANASZEK Norbert | 75 |
11 | VAN DER MEER Nick | 82 |
12 | GRIXA Jarno | 62 |
13 | STEININGER Fabian | 64 |
14 | POMORSKI Michał | 76 |
15 | KUŚ Adam | 70 |
16 | MASON Cameron | 60 |
18 | KISKONEN Siim | 64 |
20 | VAN DER TUUK Danny | 64 |
23 | VAN DEN EIJNDEN Guus | 63 |
24 | COLEMAN Zak | 70 |
25 | VISSER Guillaume | 75 |
27 | CZABOK Konrad | 65 |