Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.5 * weight + 153
This means that on average for every extra kilogram weight a rider loses -1.5 positions in the result.
Špilak
1
68 kgBiesek
3
66 kgWyss
13
63 kgGesink
15
70 kgLudescher
16
72 kgJõeäär
25
84 kgBoasson Hagen
31
75 kgSteensen
48
65 kgReimer
50
69 kgGretsch
56
69 kgKreuziger
57
65 kgKangert
69
65 kgGourgue
72
62 kgvan Amerongen
77
70 kgTaaramäe
81
68 kgForke
82
78 kgKönig
100
62 kgAaen Jørgensen
107
63 kg
1
68 kgBiesek
3
66 kgWyss
13
63 kgGesink
15
70 kgLudescher
16
72 kgJõeäär
25
84 kgBoasson Hagen
31
75 kgSteensen
48
65 kgReimer
50
69 kgGretsch
56
69 kgKreuziger
57
65 kgKangert
69
65 kgGourgue
72
62 kgvan Amerongen
77
70 kgTaaramäe
81
68 kgForke
82
78 kgKönig
100
62 kgAaen Jørgensen
107
63 kg
Weight (KG) →
Result →
84
62
1
107
# | Rider | Weight (KG) |
---|---|---|
1 | ŠPILAK Simon | 68 |
3 | BIESEK Szymon | 66 |
13 | WYSS Marcel | 63 |
15 | GESINK Robert | 70 |
16 | LUDESCHER Philipp | 72 |
25 | JÕEÄÄR Gert | 84 |
31 | BOASSON HAGEN Edvald | 75 |
48 | STEENSEN André | 65 |
50 | REIMER Martin | 69 |
56 | GRETSCH Patrick | 69 |
57 | KREUZIGER Roman | 65 |
69 | KANGERT Tanel | 65 |
72 | GOURGUE Benjamin | 62 |
77 | VAN AMERONGEN Thijs | 70 |
81 | TAARAMÄE Rein | 68 |
82 | FORKE Sebastian | 78 |
100 | KÖNIG Leopold | 62 |
107 | AAEN JØRGENSEN Jonas | 63 |