Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.9 * weight + 171
This means that on average for every extra kilogram weight a rider loses -1.9 positions in the result.
Boasson Hagen
1
75 kgStauff
2
82 kgSteensen
3
65 kgForke
6
78 kgSagan
7
65 kgReimer
8
69 kgKump
12
68 kgJõeäär
15
84 kgKvist
21
68 kgPfingsten
35
69 kgTybor
42
72 kgČanecký
45
72 kgKangert
50
65 kgKittel
53
82 kgKrizek
54
74 kgTaaramäe
74
73 kgGretsch
81
69 kgPaďour
82
59 kgKönig
89
62 kgCharucki
91
64 kg
1
75 kgStauff
2
82 kgSteensen
3
65 kgForke
6
78 kgSagan
7
65 kgReimer
8
69 kgKump
12
68 kgJõeäär
15
84 kgKvist
21
68 kgPfingsten
35
69 kgTybor
42
72 kgČanecký
45
72 kgKangert
50
65 kgKittel
53
82 kgKrizek
54
74 kgTaaramäe
74
73 kgGretsch
81
69 kgPaďour
82
59 kgKönig
89
62 kgCharucki
91
64 kg
Weight (KG) →
Result →
84
59
1
91
# | Rider | Weight (KG) |
---|---|---|
1 | BOASSON HAGEN Edvald | 75 |
2 | STAUFF Andreas | 82 |
3 | STEENSEN André | 65 |
6 | FORKE Sebastian | 78 |
7 | SAGAN Juraj | 65 |
8 | REIMER Martin | 69 |
12 | KUMP Marko | 68 |
15 | JÕEÄÄR Gert | 84 |
21 | KVIST Thomas Vedel | 68 |
35 | PFINGSTEN Christoph | 69 |
42 | TYBOR Patrik | 72 |
45 | ČANECKÝ Marek | 72 |
50 | KANGERT Tanel | 65 |
53 | KITTEL Marcel | 82 |
54 | KRIZEK Matthias | 74 |
74 | TAARAMÄE Rein | 73 |
81 | GRETSCH Patrick | 69 |
82 | PAĎOUR František | 59 |
89 | KÖNIG Leopold | 62 |
91 | CHARUCKI Paweł | 64 |